Appendix A · Analytical methods

- Data sources
- Data management & preparation
- Database definitions
- Incidence & prevalence · Chapter One & Reference Sections A & B
- Patient characteristics · Chapter Two & Reference Section C
- Treatment modalities · Chapter Three & Reference Section D
- Clinical indicators of care · Chapter Four
- Morbidity & hospitalization · Chapter Five & Reference Section E
- Pediatric ESRD · Chapter Six
- Transplantation · Chapter Seven & Reference Sections F & G
- Survival, mortality, & causes of death · Chapter Eight & Reference Sections H & I
- Cardiovascular special studies · Chapter Nine
- Preventive health care measures · Chapter Ten
- Provider characteristics · Chapter Eleven & Reference Section J
- Economic costs of ESRD · Chapter Twelve & Reference Section K
- International comparisons · Chapter Thirteen
- Census population base · Reference Section L
- Statistical methods
- Miscellaneous
- Future directions of the USRDS
- Bibliography

Appendix B · ESRD network definitions

Appendix C · Glossary

Appendix D · USRDS staff & co-investigators

Appendix E · USRDS products & services

Data requests
Appendix A · Analytical Methods

This appendix describes the USRDS database and its standardized working datasets, specialized code definitions, and common data processing practices. It also details the statistical methods used in this 2001 Annual Data Report. The Researcher’s Guide to the USRDS Database, published separately, provides additional detail about the USRDS database and Standard Analysis Files.

DATA SOURCES
The USRDS maintains a stand-alone database that includes ESRD patient demographic and diagnosis data, biochemical data, dialysis claims, and information on treatment history, hospitalization events, and physician/supplier services.

REBUS/PMMIS database
The major source of ESRD patient information for the USRDS is the HCFA Renal Beneficiary and Utilization System (REBUS), which was adopted in 1995 as the On-Line Transaction Processing (OLTP) system from the previous Program Management and Medical Information System (PMMIS) database. The REBUS/PMMIS database contains demographic, diagnosis, and treatment history information for all Medicare beneficiaries with ESRD. The database has now also been expanded to include non-Medicare patients, a detailed discussion of whom is presented later in this appendix.

HCFA regularly updates the REBUS/PMMIS database, using the Medicare Enrollment Database (EDB), Medicare inpatient and outpatient claims, the United Network for Organ Sharing (UNOS) transplant database, ESRD Medical Evidence forms (2728) provided by the ESRD networks, and ESRD Death Notification forms (2746) obtained from renal providers.

HCFA Medicare Enrollment Database (EDB)
HCFA's Enrollment Database is the designated repository of all Medicare beneficiary enrollment and entitlement data, and provides current and historical information on beneficiary residence, Medicare as Secondary Payor (MSP) status, and Health Insurance Claim/Beneficiary Identification Code (HIC/BIC) cross-referencing.

HCFA paid claims records
Inpatient transplant and outpatient dialysis claims records are used to identify new ESRD patients for whom no Medical Evidence form has been filed. These patients, who are most likely to be non-Medicare patients or beneficiaries who develop ESRD while already on Medicare because of age or disability, will eventually be entered into the REBUS/PMMIS—and hence the USRDS—database through the claims records. For patients without Medical Evidence records these claims are the only reliable information from which to determine first service dates for ESRD. These paid claims records, however, are only a supplement to—not a replacement of—other sources of information on incidence and prevalence.

It is important to note that some Medicare-eligible patients may not have bills submitted to and paid by Medicare, including MSP patients covered by private insurance, HMOs, Medicaid, or the Department of Veterans Affairs (DVA).

UNOS transplant database
HCFA began collecting data on all Medicare kidney transplants in the early 1980s. In 1987, the United Network of Organ Sharing (UNOS) was created to provide a national system for allocating donor organs and to maintain a scientific registry on organ transplantation. UNOS also began collecting data on all transplants. These two collection efforts were consolidated in 1994, and UNOS became the single source of data on transplant donors and recipients.

The HCFA and UNOS transplant data files overlap for 1987–1993, and some patients with Medical Evidence forms indicating transplant as the initial modality are not included in either file. To resolve the conflicts among these three sources, the USRDS has adopted the following procedure:
- All UNOS transplants are accepted into the database.
- All HCFA transplants before 1987 are accepted.
- HCFA transplants from 1987 to 1993 are accepted if there is no UNOS transplant record for that patient within 30 days of the HCFA transplant.
- Transplants indicated on the Medical Evidence forms are accepted if there is no record of a transplant for that patient within 30 days of the date listed on the Medical Evidence form.

HCFA paid claims records
Inpatient transplant and outpatient dialysis claims records are used to identify new ESRD patients for whom no Medical Evidence form has been filed. These patients, who are most likely to be non-Medicare patients or beneficiaries who develop ESRD while already on Medicare because of age or disability, will eventually be entered into the REBUS/PMMIS—and hence the USRDS—database through the claims records. For patients without Medical Evidence records these claims are the only reliable information from which to determine first service dates for ESRD. These paid claims records, however, are only a supplement to—not a replacement of—other sources of information on incidence and prevalence.

It is important to note that some Medicare-eligible patients may not have bills submitted to and paid by Medicare, including MSP patients covered by private insurance, HMOs, Medicaid, or the Department of Veterans Affairs (DVA).

UNOS transplant database
HCFA began collecting data on all Medicare kidney transplants in the early 1980s. In 1987, the United Network of Organ Sharing (UNOS) was created to provide a national system for allocating donor organs and to maintain a scientific registry on organ transplantation. UNOS also began collecting data on all transplants. These two collection efforts were consolidated in 1994, and UNOS became the single source of data on transplant donors and recipients.

The HCFA and UNOS transplant data files overlap for 1987–1993, and some patients with Medical Evidence forms indicating transplant as the initial modality are not included in either file. To resolve the conflicts among these three sources, the USRDS has adopted the following procedure:
- All UNOS transplants are accepted into the database.
- All HCFA transplants before 1987 are accepted.
- HCFA transplants from 1987 to 1993 are accepted if there is no UNOS transplant record for that patient within 30 days of the HCFA transplant.
- Transplants indicated on the Medical Evidence forms are accepted if there is no record of a transplant for that patient within 30 days of the date listed on the Medical Evidence form.

HCFA standard analytic files (SAFs)
HCFA's SAFs contain data from final action claims, submitted by Medicare beneficiaries, in which all adjustments have been resolved. For
Part A institutional claims, theUSRDS uses the following data:
 - inpatient, 100% SAF
 - outpatient, 100% SAF
 - home health agency (HHA), 100% SAF
 - hospice, 100% SAF
 - skilled nursing facility (SNF), 100% SAF

For Part B physician/supplier claims:
 - physician/supplier, 100% SAF
 - durable medical equipment (DME), 100% SAF

HCFA SAFs are updated each quarter through June of the next year, when the annual files are finalized. Datasets for the current year are created six months into the year and updated quarterly until finalized at 18 months, after which they are not updated to include late arriving claims. Annual files are thus approximately 98% complete. The USRDS 2001 ADR includes all claims up to December 31, 1999. Patient-specific demographic and diagnosis information, however, includes data as recent as November 2000.

Annual Facility Survey (AFS)
In addition to the HCFA ESRD databases, independent ESRD patient counts are available from HCFA's Annual Facility Survey, which all dialysis units and transplant centers are required to complete at the end of each calendar year. The AFS reports counts of patients being treated at the end of the year, new ESRD patients starting during the year, and patients who died during the year. Counts of both Medicare and non-Medicare end-of-year patients are included. While AFS files do not carry patient-specific demographic and diagnosis information, they do provide independent patient counts used to complement the HCFA patient-specific records.

CDC Surveillance
The Centers for Disease Control and Prevention use their National Surveillance of Dialysis-Associated Diseases in the United States to collect information from dialysis facilities on patient and staff counts, membrane types, reuse practices, water treatment methods, therapy types, vascular access use, antibiotic use, hepatitis vaccination and conversion rates (for both staff and patients), and the incidence of HIV/AIDS and tuberculosis. None of the information is patient-specific. The USRDS reports survey data through 1999; the CDC did not, however, conduct a survey in 1998.

DATA MANAGEMENT & PREPARATION
The USRDS main computer system is a Compaq Alpha system consisting of one dual EV-4 (200 MHz) and two dual EV-6 (500 MHz) processor servers, with a total of 3.2 GB of RAM memory and 1.5 terabyte (1,500 gigabytes) of disk farms, all managed by three interconnecting clusters.

We use the SAS® database management system and development tools as our core database technology platform; this differs from the Oracle RDBMS system used by the previous contractor only in physical data allocation and management. All information in the earlier system has been integrated into the new database, and its continuity and completeness have been maintained.

Data loading & cleaning
All data files come to the USRDS in IBM 3480 cartridges/CD-ROMs with EBCDIC, ASCII, or SAS® formats. Once loaded into the system, files are converted into SAS® data sets for further processing, and a series of data verification steps is exercised to ensure data quality and integrity before updating the USRDS database system.

Database updates
For this ADR, patient demographic and diagnosis data are updated through November 2000, and Medicare Part A and Part B claims are collected through December 31, 1999. While the USRDS has generally waited 15 months before reporting patient-specific data for a given period, we intend to alleviate delays in processing data through the Medicare system by reporting updated information on our website (www.usrds.org) several times each year. Delays have been caused by changes to the format of the HCFA record files.

ESRD patient determination
A person is identified as having ESRD when a physician certifies the disease on a Medical Evidence form (HCFA 2728), or when there is other evidence that the person has received chronic dialysis or a kidney transplant. Patients who experience acute renal failure and are on dialysis for days or weeks, but who subsequently recover kidney function, are, as much as possible, excluded from the database. Patients who die soon after kidney failure without receiving dialysis treatment are occasionally missed.

The first ESRD service date (FSD) is the single most important data element in the USRDS database, and each patient must, at a minimum, have a valid FSD. This date is used to determine the incident year of each new patient and the first year in which the patient is counted as prevalent. The date 90 days after the FSD is used as the starting point for most patient survival analyses.
The FSD is derived by taking the earliest of:
- the date of the start of dialysis for chronic renal failure, as reported on the Medical Evidence form,
- the date of a kidney transplant, as reported on a HCFA or UNOS transplant form, a Medical Evidence form, or a hospital inpatient claim, or
- the date of the first Medicare dialysis claim.

Most FSDs are obtained from the Medical Evidence form. In the absence of this form, the date of the first Medicare dialysis claim or transplantation usually supplies the FSD. In the few cases in which the date of the earliest dialysis claim is earlier than the first dialysis date reported on the Medical Evidence form, the earliest claim date is used as the FSD.

Medicare & non-Medicare (ZZ) patients

Beneficiaries are enrolled in Medicare based on criteria defined in Title XVIII of the Social Security Act of 1965 and in subsequent amendments to the Act. A person in one of these four categories is eligible to apply for Medicare entitlement:
- aged 65 and over
- disabled
- ESRD program
- Railroad Retirement Board (RRB)

Most ESRD patients are eligible to apply for Medicare as their primary insurance payor. There are, however, some patients who are not immediately eligible for Medicare coverage because of their employment status and insurance benefits. These patients are usually covered by Employer Group Health Plans (EGHPs), and must wait 30 to 33 months before becoming eligible to have Medicare as their primary payor. They are therefore not in the EDB database during the waiting period. Some of these patients, particularly new patients since 1995, have FSDs established by Medical Evidence forms, but have no dialysis claims or hospitalization events in the HCFA claims database. In the REBUS/PMMIS database these patients are designated 'ZZ', or non-Medicare (the REBUS/PMMIS group assigns 'ZZ' in the two-character Beneficiary Identification Code field to identify all non-Medicare ESRD patients). HCFA does not generally include these patients in the datasets released to researchers.

Because Medicare may be the secondary payor for up to the first 30–33 months of ESRD, delaying the appearance of Medicare dialysis claims, lost-to-follow-up categorization cannot begin until the end of the second year after first ESRD service. This 'first two-year rule' is particularly important for non-Medicare patients. Since it is now 30–33 months before these patients have Medicare as their primary payor, some patients may be followed for up to two years with limited amounts of event or death data. These patients contribute dialysis or transplant days to the denominator of rate calculations, but only questionable event data to the numerator. Non-Medicare patients who have been included in the
database since 1995 therefore pose a significant challenge to the USRDS and HCFA, and methods of tracking them are currently being explored.

A number of factors can result in a lack of dialysis data and eventual reclassification of the patient as lost-to-follow-up:

- The patient may have recovered renal function and no longer have ESRD.
- The patient may have left the country.
- The patient's dialysis therapy may be covered by a payor other than Medicare, or the patient may have received a transplant not paid for by Medicare and not reported to UNOS.
- The patient may be enrolled in a Medicare HMO, so that Medicare claims for dialysis are not generated even though the patient is eligible for Medicare coverage.
- The patient's death may not have been reported to the Social Security Administration or to HCFA.

60-day rule
This rule requires that a treatment modality must continue for at least 60 days before it can be considered a primary or switched modality. It is used to construct a patient's modality history, i.e. when creating the modality sequence file.

90-day rule
This rule defines each patient's start date, for data analyses, as day 91 of ESRD. Allowing outcomes to be compared among all ESRD patients at a stable and logical point in time, this rule is used primarily when calculating survival rates and comparing outcomes by modality at several points in time. Use of this rule overcomes the difficulties of examining data from the first three months of ESRD service, an unstable time for new patients as renal providers try to determine the best treatment modalities, and from center hemodialysis patients younger than 65 and not disabled, who cannot bill Medicare for their dialysis treatments and hospitalization until 90 days after the first ESRD service date (patients on peritoneal dialysis or home dialysis, or with transplant as the first modality, can bill immediately).

DATABASE DEFINITIONS

Modalities
Because different patient modality categories are used throughout the ADR, these categories are defined in the methods sections for each chapter.

Primary cause of renal failure
Information on the primary cause of renal failure is obtained directly from the Medicare Evidence form. For the Annual Data Report these disease codes have been grouped into eight categories, with ICD-9-CM codes as follows:

- diabetes: 250.00 and 250.01
- hypertension: 403.9, 440.1, and 593.81
- glomerulonephritis: 580.0, 580.4, 582.0, 582.1, 582.9, 583.1, 583.2, 583.4, and 583.81
- cystic kidney: 753.13, 753.14, and 753.16
- other urologic: 223.0, 223.9, 590.0, 592.0, 592.9, and 599.6
- other cause: all other ICD-9-CM codes covered in the list of primary causes on the Medical Evidence form, with the exception of 799.9
- unknown cause: 799.9 and other ICD-9-CM codes not covered in the primary causes on the Medical Evidence form
- missing cause: no ICD-9-CM code listed

Race & ethnicity
Information on patient race and ethnicity is obtained from the Medical Evidence form, the HCFA Medicare Enrollment Database, and the REBUS identification file. Because they are addressed in separate questions on the Medical Evidence form, racial and ethnic categories can overlap. In both the figures and tables of this ADR we have added expanded information on Hispanic patients. Most rate calculations that include this data begin with 1996, the first full year after the introduction of the revised Medical Evidence Form, in which patient ethnicity is a required field. Reference Sections A to D, however, contain Hispanic data starting in 1995, though this data may be incomplete. The non-Hispanic category includes all patients whose ethnicity is missing or unknown.

Because of the small number of ESRD patients of some races, we have concentrated throughout the ADR on white, black, Native American, and Asian patients. As the numbers of patients of other races increase, data on them will be presented in the ADR.

INCIDENCE & PREVALENCE · CHAPTER ONE & REFERENCE SECTIONS A & B
Incidence is defined as the number of people in a population newly diagnosed with a disease in a given time period, typically a year. Prevalence is defined as the number of people in a population who have the disease at a given point in time (point prevalence) or during a given time period (period prevalence). The USRDS generally reports point prevalence—the type of prevalence used primarily throughout the Annual Data Report—as of December 31, while period preva-
Incidence is reported for a calendar year. Annual period prevalent data thus consist both of people who have the disease at the end of the year and those who had the disease during the year and died before the year’s end.

The USRDS treats successful transplantation as a therapy rather than as a “recovery” from ESRD. Patients with a functioning transplant are counted as prevalent patients.

Because data are available only for patients whose ESRD therapy is reported to HCFA, patients who die of ESRD before receiving treatment or whose therapy is not reported to HCFA are not included in the database. The terms incidence and prevalence are thus qualified as incidence and prevalence of reported ESRD. Some ESRD registries, such as the European Dialysis and Transplantation Association, use the term “acceptance into ESRD therapy.” The USRDS, however, believes that “incidence of reported ESRD therapy” is more precise, because “acceptance” implies that remaining patients are rejected, when in fact they may simply not be identified as ESRD cases or may not be reported to HCFA.

As discussed earlier, patients are classified as lost-to-follow-up if they have had ESRD for at least two years but have had no reported dialysis, death, or transplant data for one year. Beginning with the 1992 ADR, patients classified as lost-to-follow-up are not included in the point prevalent counts; they are, however, reported separately in Tables B.1 and B.a of the Reference Tables.

Point prevalence is a useful measure for public health research, since it measures the current burden of the disease on the health care delivery system, and period prevalence is appropriate for cost analysis, since it indicates the total disease burden over the course of the year. We have chosen, however, to focus primarily on the incidence of ESRD, believing that it is the most useful measure for medical and epidemiological research that examines disease causality and its effect on different sub-populations.

The Reference Tables present parallel sets of counts and rates for incidence (Section A) and December 31st point prevalence (Section B). Section B also presents annual period prevalent counts and counts of lost-to-follow-up patients.

Incident data for Figure 1.1, a map of the odds ratios of developing ESRD, are obtained from HCFA, while population counts are obtained from the U.S. Census Bureau. A logistic regression is used to compare the incidence of ESRD by location, with ESRD (yes or no) as the dependent variable. Explanatory variables include incident year, race (white and black), gender, age (20–44, 45–64, 65–74, and 75+), and location (50 states plus the District of Columbia).

Reference Section A
Because the U.S. population figures used for this report (presented in Reference Section L) include residents only of the 50 states and the District of Columbia, tables in this section focus on patients from these areas as well. The exceptions are Tables A.a, A.9–14, and A.f–k, all of which present data specific to patients in Puerto Rico and the Territories, or include these patients in the patient population. Age is computed as of the beginning of ESRD therapy.

Reference Section B
These tables also focus on patients who are residents of the 50 states and the District of Columbia, with the exception of Tables B.1 and B.b. Age is calculated as of December 31 in all tables.

PATIENT CHARACTERISTICS · CHAPTER TWO & REFERENCE SECTION C
Data used in both Chapter Two and Reference Section C are obtained from the HCFA Medical Evidence Form (2728), which plays a central role in the USRDS database. This form is completed at the dialysis unit for each new ESRD patient treated at that unit, and is sent to HCFA through the ESRD networks. It serves to establish Medicare eligibility for individuals who previously were not Medicare beneficiaries, reclassify previously eligible Medicare beneficiaries as ESRD patients, and provide demographic and diagnostic information on all new ESRD patients regardless of Medicare entitlement.

Before 1995 units were required to file the Medical Evidence form only for Medicare-eligible patients. With the adoption of the new form in 1995, however, dialysis providers are now required to complete the form for all new ESRD patients, regardless of Medicare eligibility status. The revision also contains new fields for comorbid conditions, employment status, race, ethnicity, and biochemical data at the start of ESRD.

This form is the only source of information about the cause of a patient’s ESRD. Because the list of diseases was revised for the new form, the USRDS stores the codes reported on each version so that detail is not lost through trying to convert one set of codes to the other.
The data in Tables C.4 and on are restricted to patients for whom the first Medical Evidence Form was a new form and was certified within 12 months of the first service date; total patient counts for this group are listed in Table C.3.

TREATMENT MODALITIES - CHAPTER THREE & REFERENCE SECTION D

Chapter Three and the associated tables describe the treatment modalities of all known ESRD patients, Medicare and non-Medicare, who are not classified as lost-to-follow-up. Table D.6, however, contains data only on incident Medicare patients who have survived at least 90 days. The 60-day rule is used to identify a change in modality. (A detailed discussion of the lost-to-follow-up methodology, non-Medicare patients, and the 60-day rule appears earlier in this appendix.)

Treatment modalities are defined here as follows:

- **center hemodialysis:** hemodialysis treatment received at a dialysis center
- **center self-hemodialysis:** hemodialysis administered by the patient at a dialysis center; a category usually combined with center hemodialysis
- **home hemodialysis:** hemodialysis administered by the patient at home; cannot always be reliably identified in the database
- **CAPD:** continuous ambulatory peritoneal dialysis; usually combined with CCPD
- **CCPD:** continuous cycling peritoneal dialysis; usually combined with CAPD
- **other peritoneal dialysis:** primarily intermittent peritoneal dialysis (IPD), a small category except among very young children, and usually combined with unknown dialysis and uncertain dialysis to form an other/unknown dialysis category
- **uncertain dialysis:** a period in which the dialysis type is unknown or multiple modalities occur but none last 60 days; usually combined with other peritoneal dialysis (IPD) and unknown dialysis to form an other/unknown dialysis category
- **unknown dialysis:** a period in which the dialysis modality is not known (e.g., when dialysis sessions are performed in a hospital); usually combined with other peritoneal dialysis (IPD) and uncertain dialysis to form an other/unknown dialysis category
- **renal transplantation:** a functioning graft from either a living donor (a blood relative or other living person) or a cadaveric donor
- **death:** a category not appearing in the year-end modality tables, which report only living patients, but used as an outcome, i.e., in tables showing living patients followed for a period of time for their modality treatment history

The tables in Reference Section D are divided into three sections. The first section, Tables D.1–5 and D.10, provides counts and percentages, by demographics and treatment modality, of prevalent patients alive at the end of each year. Because these tables include both Medicare and non-Medicare patients, counts and percentages in the categories of unknown age, gender, race, primary cause of renal failure, network, and state are significantly higher. The totals by year are also higher than the point prevalent counts in Reference Section B, which include only U.S. residents and drop patients with missing birth dates. Age is computed as of December 31.

The second section, Table D.6, shows modality at 90 days and two years after first service for all incident Medicare patients beginning renal replacement therapy from 1995–1997. The 90-day rule is used to exclude patients who died during the first 90 days of ESRD, and age is computed as of the date of first ESRD service.

The third section, Tables D.7–8, presents counts of prevalent patients alive at the end of each year by ESRD exposure time and modality. Table D.7 shows counts by the number of years the patient has had ESRD, while Table D.8 shows counts by the number of years on the end-of-year treatment modality. For the duration of ESRD exposure, zero should be read as less than one year, one as at least one full year but less than two, and so on.

CLINICAL INDICATORS OF CARE - CHAPTER FOUR

Data underlying the figures in this chapter are obtained from several sources. Erythropoietin (EPO) dose information and hematocrit values in Figures 4.1–15 are obtained from EPO claims data, while in Figures 4.16–22 Part B physician/supplier claims data supply the CPT codes indicating the insertion of temporary and permanent central venous accesses and simple fistulas. The information used in Figures 4.23–24 and 4.26–27 is obtained from the HCFA 2000 ESRD Clinical Performance Measures Project (formerly the ESRD Core Indicators Project). Data on urea reduction ratios (URRs) in Figure 4.25 come from Part A institutional outpatient claims. All figures include data from Medicare patients only.

Figure 4.1 shows the mean entry-period hematocrit and first- and second-year death rates in incident hemodialysis patients from 1990 to 1998.
Patients are classified by incident year, defined as the year of the first ESRD service date. Those included in this graph survive a full 90 days plus a six-month entry period, in which they have at least one EPO claim. The mean entry-period hematocrit is calculated for each patient, and the percentages of patients with mean hematocrits within the following ranges are graphed for each incident year: <30%, 30–<33%, 33–<36%, and ≥36%. The adjusted first- and second-year death rates are then calculated from the Cox model, adjusted by age, gender, race, and primary diagnosis. Methods used follow the interval death rate methods discussed in the statistical methods section later in this appendix.

Figure 4.2 displays mean hematocrit by state. The data include 1999 prevalent hemodialysis patients with at least one EPO claim during the year and ≤20 EPO administrations per month. Time at risk begins on January 1 (prevalent patients) or day 91 of ESRD (incident patients) and is censored at the earliest of modality change, loss-to-follow-up, death, or December 31, 1999. Each patient’s yearly mean hematocrit is calculated from claims during the time at risk, and the average of these values is computed for each state.

Figure 4.3 shows the mean hematocrit, by month (1996 through May 2000), for prevalent ESRD patients with EPO claims, along with the monthly dose per week for prevalent hemodialysis and peritoneal dialysis patients with EPO claims and ≤20 EPO administrations per month. Figure 4.4 illustrates the distribution of patients by mean hematocrit group. To obtain the data for both figures a monthly mean hematocrit is computed for each patient, and the mean dose per week is calculated as the total administrations divided by the total weeks. This mean EPO dose per week, however, does not take into consideration the actual number of weeks EPO is administered, for there may be gaps in administrations from missed or held doses. These unweighted averages may thus overestimate the weeks in the denominator and underestimate the true EPO dose per week. In order to give more weight to patients consistently receiving EPO, weighted averages across patients are calculated, using the number of monthly administrations as the weight. A monthly mean hematocrit and weighted mean dose per week are then calculated across all patients. For hemodialysis patients a weight of 1 is assigned to those with 11–14 administrations, a weight of 1/2 to 10 or 15, 1/3 to 9 or 16, etc.; for peritoneal dialysis patients, a weight of 1 is assigned to those with 4–7 administrations, a weight of 3/4 to 3 or 8, 1/2 to 2 or 9, etc.

Figure 4.5 illustrates the average hematocrit for prevalent hemodialysis and peritoneal dialysis patients with EPO claims. Each patient’s yearly mean hematocrit is calculated from claims dated from January 1 or day 91 of ESRD until a modality change or the end of the year, whichever is earliest, and the average of these values for each year and dialysis group is computed.

Figures 4.6–9 present data by race and modality for prevalent hemodialysis and peritoneal dialysis patients with EPO claims. For each year, EPO data is obtained from claims dated from January 1 or day 91 of ESRD until a modality change or the end of the year, whichever is earliest. Figure 4.9 includes only those patients who have body weight data on the HCFA Medical Evidence Form, 1995 to 1999.

In Figures 4.8 and 4.9 the mean EPO dose per week, weighted by the average monthly administrations, is calculated with a method similar to that used in Figure 4.3. However, instead of being calculated on a monthly basis, the mean dose per week in Figures 4.8 and 4.9 is calculated on an annual basis, in which it is weighted by the average—rather than actual—number of monthly EPO administrations. The average number of monthly EPO administrations, calculated as the total administrations divided by the total time at risk in months, is therefore used as the weight. For hemodialysis patients, a full weight of 1 is given to patients with an average of >11–14 administrations per month. Linearly decreasing weights are given to patients with 11 or fewer or with greater than 14 administrations per month. The following weights are assigned to hemodialysis patients with the given number of average monthly EPO administrations: 11/12 for >10–11 or >14–15; 10/12 for >9–10 or >15–16; 9/12 for >8–9 or >16–17; 8/12 for >7–8 or >17–18; 7/12 for >6–7 or >18–19; 6/12 for >5–6 or >19–20; 5/12 for >4–5; 4/12 for >3–4; 3/12 for >2–3; 2/12 for >1–2; and 1/12 for >0–1. For peritoneal dialysis patients, a weight of 1 is assigned to patients with an average of >4–7 administrations per month, and the following weights are assigned to the given monthly administrations: 1/2 for ≥3–4 or ≥7–8; 1/3 for >2–3 or ≥8–9; 1/3 for ≥1–2 or ≥9–10; and 1/5 for ≥0–1 or >10–20. This method is also used in Figures 4.11 and 4.14.

Mean hematocrit (Figures 4.10 and 4.13), mean EPO dose per week (Figures 4.11 and 4.14), and the percent of patients who meet the DOQI tar-
get hematocrit of ≥33% (Figures 4.12 and 4.15) are presented for 1999 period prevalent hemodialysis and peritoneal dialysis patients with EPO claims. Multiple hematocrit measurements are condensed into one mean value per patient, and these values are used to calculate the mean hematocrit across patients for each HSA as well as the percentage of patients with mean hematocrit ≥33%. Mean EPO dose per week is computed across patients on an HSA level and weighted by the average number of monthly administrations, following the methods used for Figures 4.8–9.

Figure 4.16 displays catheter days per patient year at risk and days per insertion for 1996–1999 period prevalent hemodialysis patients, while Figures 4.17–18 show these rates on an HSA level for 1999. Figures 4.19–21 show HSA-level maps of temporary and permanent central venous catheter insertion rates and simple fistula creation rates per 1,000 patient years at risk, and Figure 4.22 illustrates these annual rates for 1996 to 1999.

Using the same method applied in the hospitalization analyses, hemodialysis patients failing to reach a certain level of Medicare paid dialysis bills are excluded from Figures 4.16–22, as are those classified in the enrollment database as MSP anytime during the follow-up period. Part B physician/supplier claims data provide the CPT codes for these insertion rates; specific codes are listed in the figure captions. Duplicate occurrences of the same CPT code with the same first and last charge date. For Chapter Five, the only con-

In the calculation of temporary and permanent central venous catheter insertion rates and catheter day rates (Figures 4.16–20 and 4.22), additional methods are used to exclude catheters inserted for purposes other than dialysis. A CPT code of 36533, 36489, or 36491 is included only if it is associated with either a line-level diagnosis code or a claim-level principal diagnosis code among the following ICD-9-CM codes related to dialysis or renal failure: 250, 403, 580–589, 593, 996.1, 996.62, 996.73, V45.1, and V56. Additionally, Part B physician/supplier and durable medical equipment claims are searched for chemotherapy (CPT codes 96408, 96410, and 96412) and parenteral nutrition (CPT codes B4164–B5200, B9004, B9006, and B9999) claims. Patients with at least one of these codes during a year are excluded for that year.

Catheter days during the time at risk are counted by summing the days from a catheter insertion (CPT code 36533) until a catheter removal (CPT code 36535). Since insertions and removals occur on claims on separate lines with different expense dates, it is possible for two insertions or two removals to occur consecutively, in which case the days are counted from the first insertion or until the last removal. When the first code during the time at risk indicates a removal, catheter days are counted from the beginning of the time at risk until the removal. Similarly, in the case of an insertion as the last code of the time at risk, catheter days are counted from the insertion until the end of the risk period. An insertion and removal occurring on the same day are counted as one catheter day. Rates of catheter days per year at risk are then calculated by dividing the total catheter days during the time at risk by the total years at risk, and the number of days per insertion is computed by dividing the total days by the number of insertions during the time at risk.

Figure 4.25 illustrates the percent of 1999 prevalent hemodialysis patients with a median urea reduction ratio of ≥65%, the target set by the NKF Dialysis Outcomes Quality Initiative (DOQI). The range of each patient’s URR is obtained from the “G” modifier attached to CPT code 90999 with revenue codes 821 or 825, and the median range includes all URR values from January 1 or day 91 of ESRD until the end of the year. When a patient has an even number of URR ranges, the two middle values are each given a weight of 0.5.

MORBIDITY & HOSPITALIZATION · CHAPTER FIVE & REFERENCE SECTION E

Chapter Five

Methodologies used to create the figures in this chapter generally echo those used to create the tables in Reference Section E (described below). Inclusion and exclusion criteria are the same, as are the methods for computing hospitalization rates. Part A inpatient institutional claims are used for the analyses unless otherwise specified, and the methodologies for excluding MSP patients are applied here as well, as detailed in the discussion of Section E.

One exception is the practice in the reference tables of combining hospitalizations that occur with no days between discharge and the following admission into one hospitalization from the first admission date to the last discharge date. For Chapter Five, the only consecutive hospitalizations combined into one are those that overlap. In this case the principal diagnosis and procedure codes are retained
from the first of the two overlapping hospitalizations, with the combined hospitalization extending from the first admission date to the last discharge date. An admission that occurs the same day or the day after a discharge is designated as a separate hospitalization with its own diagnosis and procedure codes.

New to this year’s ADR, Figures 5.3–5, 5.11, and 5.18–20 present data for Hispanic versus non-Hispanic patients according to the ethnicity classification on the HCFA Medical Evidence form. Patients whose ethnicity is reported as unknown, missing, or other than Hispanic are included in the non-Hispanic category.

Data for Figures 5.1–5, and for related figures, are calculated using different methods. Data on hospital days per patient year at risk include only days within the analysis period, while data on hospital days per admission include all days for hospitalizations in which the admissions occur within the analysis period, even days occurring after the period has ended. The number of days per admission in Figures 5.3–6 thus represents the mean length of stay per admission for hospitalizations beginning within the time at risk for the given year. The number of days per patient year at risk (Figures 5.1–5, 5.8, 5.15, and 5.18–20), however, includes only those hospital days that fall within the time at risk, regardless of the admission date.

Figures 5.6–7 display HSA-level hospital admissions per patient year at risk and days per admission for 1999 prevalent ESRD patients. Maps are presented separately for whites, non-whites, and all ESRD patients; the non-white group contains patients with race listed as missing, unknown, or other than white.

Figure 5.8 presents HSA-level data of the number of hospital days per year at risk for prevalent ESRD patients. While time at risk is censored here at death or the end of the year for the all-ESRD, diabetic, and non-diabetic patients, hemodialysis and peritoneal dialysis patients are also censored at three days prior to transplant in order to exclude transplant-related hospital days. Transplant patients are also censored at three years following the date of transplant, since their Medicare eligibility may be lost and their hospitalization data may be incomplete. The diabetic group consists of all ESRD patients for whom diabetes is stated as the cause of disease, while the non-diabetic group contains all ESRD patients with a cause of disease that is unknown, missing, or other than diabetes.

Data from 1997 to 1999 are combined in Figures 5.9–11 and 5.15, which illustrate the mean number of hospital admissions and average length of stay per year at risk by gender (or, in 5.11, by ethnicity) and modality in combination with age, race, or diabetic status. Age is determined on January 1 of the year, and patients with a cause of disease that is unknown, missing, or other than diabetes are classified as non-diabetic. Patients with missing age, gender, or race, as well as patients with race other than white, black, Native American, or Asian, are excluded.

Figures 5.12–14 show the number of hospitalizations per patient year at risk for incident and prevalent hemodialysis, peritoneal dialysis, and transplant patients at various vintages, or times following the first ESRD service date. Vintage is defined as the time from the first ESRD service date until January 1 of the year for prevalent patients, or, for incident patients, until day 91 of ESRD. Data is presented by year for 1991 to 1999, with the year representing the year following the first service date. A patient with a first service date of April 5, 1990, for example, is included in the <1 year group for 1991, in the 1–<2 years group in 1992, and in the 2–<3 years group in 1993. Time at risk is defined as it is in Figure 5.8, with transplant patients censored at three years following the date of their most recent transplant. (A transplant patient is included if he or she has been an ESRD patient for longer than three years, as long as the most recent transplant was less than three years ago.)

Data on the frequency of principal procedures and diagnoses (Figures 5.16–17) and on related hospital days (Figures 5.18–20) are obtained from Part A inpatient and outpatient institutional claims. Patients with missing values for gender or race are excluded. The time at risk for each procedure is censored at the end of the year, death, or three days prior to transplant. As in the total admission rates presented in the hospitalization reference tables, inpatient rates are calculated by subtracting the days spent in the hospital for each procedure or diagnosis from the total time at risk for admission for that procedure or diagnosis.

Figures 5.21–30 show the relative risk of hospitalization by URR and hematocrit. The study includes adult (>19 years of age) 1998 incident hemodialysis patients, for whom the incident date is defined as the first ESRD service date plus 90 days. Included patients survive the first 90 days plus a full six-month entry period, and have at least four EPO claims and three URR measurements during the entry period. Patients with a bridge hospitalization spanning the start of the follow-up period are excluded. The range of each patient’s URR is obtained from the “G” modifier attached to CPT code 90999 with revenue codes 821 or 825. For each patient the median URR of the last three entry-period URR values is selected, and the mean entry-period hematocrit is computed. Patients are followed from the end of the entry period until the earliest of death, first hospitalization, modality change, loss-to-follow-up, or December 31, 1999. Infectious hospitalization is defined by the principal ICD-9-CM codes used in Figures 5.16–17 and 5.20, while cardiovascular hospitalization is defined by the following principal ICD-9-CM codes: 276.6, 394–398.99, 401–405, 410–438, and 440–459. Cardiac death is defined by a primary cause of death code of 01, 02, 23, or 25–31 on the ESRD death notification form, while infectious death is defined by a primary cause of death code of 10–13, 49–60, 64–65, or 74.

Reference Section E
Because hospitalization data may be incomplete for non-Medicare patients, the analyses in this section include Medicare patients only. Hospitalization data is obtained from Part A institutional inpatient claims, and Table E.27 also includes REBUS hospitalization data through June 1998. REBUS inpatient hospitalization data from July 1998 to December 1999 is not included in this table because it is currently (as of March 2001) unavailable from HCFA.

Tables E.1–26 include dialysis and transplant patients who have been on their modality for at least 60 days, who have reached day 91 of ESRD by the end of the year, and who are residents of the 50 states, the District of Columbia, Puerto Rico, or the Territories. Patients with AIDS as a primary or secondary cause of death, patients with missing values for age, gender, or race, and patients of races that are unknown or other than white, black, Native American, or Asian are excluded. Age is classified on January 1 of each year. Patients are also classified according to the primary cause of ESRD, in which the “other” category includes patients with missing data or causes other than diabetes, hypertension, or glomerulonephritis.

Patients are classified by modality at the beginning of the year using the following categories:

- all-dialysis: patients on hemodialysis, CAPD/CCPD, or dialysis of an unknown type, as well as patients who have not been on one modality for the previous 60 days.
hemodialysis: patients who have been on hemodialysis for at least 60 days at the start of the period

- CAPD/CCPD: patients who have been on CAPD/CCPD for at least 60 days at the start of the period at risk

- all-ESRD: all patients

To limit the contribution of patient years at risk from patients who are classified as MSP, and who therefore have incomplete hospitalization data, dialysis patients failing to reach a certain level of Medicare paid dialysis bills are excluded from Tables E.1–26. Dialysis patient start dates (January 1 of the year for prevalent patients and day 91 of ESRD for incident patients) must fall between start and end dates based on Medicare paid dialysis claims, as follows:

- start date: the first day of the first month in which there is at least $675 of Medicare paid dialysis claims
- end date: the end of a three-month period in which there is less than $675 of paid claims in each month

If a patient's start date does not fall between these dates, he or she is excluded from the analysis for that year. This method is similar to that used in the economic analysis section, except that here the paid claims dates are analyzed only for the dialysis patient start date. The dialysis patient end date remains the earliest of death, three days prior to transplant, and December 31 of the year.

MSP patients are also excluded from this dataset through use of an additional filter that uses information from the enrollment database to determine MSP status. If this database indicates MSP status anytime during the time at risk, the patient is excluded for the year.

For patients in the all-dialysis, hemodialysis, and peritoneal dialysis categories, the period at risk for all hospitalization analyses is from January 1 or day 91 of ESRD until the earliest of death, three days prior to transplant, or December 31. Modality change is considered a censoring event only in the case of a change from dialysis to transplant. For dialysis patients in the all-ESRD category, in contrast, the analysis period for hospitalization is censored only at death or December 31 of the year; modality change is not used as a censoring event. For transplant patients in the all-ESRD and transplant categories, the analysis period is censored at the earliest of death, three years after the transplant date, or December 31 of the year. The censoring of transplant patients at three years following the transplant is new to this year's ADR, and necessary because Medicare eligibility may be lost and hospitalization data may be incomplete for these patients.

In the case of a hospitalization that begins prior to January 1 or day 91 of ESRD and continues into the analysis year, the time at risk for first admission begins the day after discharge from this bridge hospitalization. Patients with a bridge hospitalization that spans the entire analysis period are excluded from the first admission rates.

Time at risk is calculated differently for length of stay and total admissions. Since a hospitalized patient remains at risk for additional hospital days, rates for hospital days include hospital days in the time at risk. Since a currently hospitalized patient is not, however, at risk for new admissions, hospital days for each year are subtracted from the time at risk for total admissions. In the case of hospitalizations in which admission occurs the same day as discharge, zero days are subtracted from the time at risk for total admissions. When bridge hospitalizations span the start of the analysis period, only the days within the period are subtracted from the time at risk for total admissions.

All admissions and hospital stay days during the analysis period are included, respectively, in the total admissions and length of stay for each year. An admission for a hospitalization that occurs before and spans the start of the analysis period is excluded from the total admissions for that analysis period, and only the hospitalization days within the period are counted in the total days for length of stay rates. The minimum length of stay is one day, and hospitalizations with admission and discharge on the same day, as well as hospitalizations with discharge the day after admission, are both counted as one day.

In Tables E.1–26, overlapping hospitalizations and hospitalizations that occur with no days between discharge and the following admission are combined into one hospitalization that spans the first admission date to the last discharge date. This follows the methodology of previous Annual Data Reports, allowing for comparison of the reference tables across years.

Table E.27 in contrast, includes all hospitalizations in the total discharges reported, and no overlapping or adjacent hospitalizations are combined. These tables present total hospital discharges by diagnostic related groups (DRGs),
and no exclusions are made for patients who died of AIDS or for MSP status. Total discharges are presented by modality group and the year of discharge. For each year the total discharges are counted from January 1 or the first ESRD service date until the end of the period at risk, as defined previously. In this case, however, the period at risk for transplant patients in the transplant and all-ESRD groups is not censored at three years following the date of transplant. Inpatient REBUS data (available only through June 1998) are combined with Part A institutional inpatient claims data, and duplicate observations from both sources with identical hospitalization start dates, end dates, and DRG codes are omitted. The hospitalization data presented in Figures 6.15–17 contain information from Part A institutional inpatient claims, and exclude non-Medicare patients. As in the methods used for Chapter Five, two overlapping hospitalizations are combined into one, and an admission that occurs the same day or the day after a discharge is counted as a separate hospitalization. Patients with AIDS as a primary or secondary cause of death are excluded, as are patients classified as MSP according to paid dialysis claims or the enrollment database. Residents of the 50 states, the District of Columbia, Puerto Rico, and the Territories are included. Age is classified on January 1 of the year, and patients with missing age or gender information are excluded. Prior ESRD time is calculated as the time from the first ESRD service date until the first of the year for prevalent patients, or day 91 of ESRD for incident patients. Principal ICD-9-CM diagnosis codes used for overall infection are listed in the discussion of Figures 5.16–20.

The methodology used in Tables E.1–5 for computing first admission rates uses a generalized mixed model. Smoothed rates are used to calculate the expected number of first hospitalizations, a number then used to obtain the standardized hospitalization ratios (SHRs) in Table E.6. These methods are described later in this Appendix.

The methods used to compute total admissions and days hospitalized are the same as those used in prior Annual Data Reports. As in the 2000 ADR, the total admission rate is expressed per 1,000 patient years at risk, while the rate of hospital days is given per patient year at risk. Data from 1997 to 1999 are pooled to increase stability, but follow-up is for single calendar year periods using cohorts of patients alive at the beginning of each year. The number of hospital admissions and days, and the number of years at risk for each event, are computed separately for each year and summed over the three years; rates are then computed by dividing the total admissions or days by the total time at risk. A patient who is alive at the beginning of 1997, dies in 1999, and has two hospitalizations each year, for example, will contribute two and a fraction years at risk and six admissions.

PEDIATRIC ESRD · CHAPTER SIX

Information on pediatric patients is a subset of the ESRD patient data used throughout the ADR; methods used to create most figures in this chapter are therefore the same as those described in the related chapter discussions.

Figure 7.1 presents organ donation rates. The numerators include all transplant recipients younger than 65, with known gender, and who are white, black, Native American, or Asian. Denominators are obtained from the U.S. Census. Rates are calculated as the number of donated kidneys (excluding discarded organs) divided by the population, and multiplied by one million to yield donations per million population. These rates are mapped by HSA in Figures 7.4 and 7.5.

Figure 7.9 presents trends, by race, in graft and patient survival rates after first transplant, along with estimates of conditional graft and patient half-life. Survival rates are adjusted for age, gender, and primary diagnosis, and standardized to 1997. Half-life estimates are conditional on surviving one year post-transplant. The estimated median half-life is calculated by multiplying the estimated mean survival by log(2). The estimated mean survival is calculated as the sum of the survival time divided by the number of observed graft failures (including death) and patient deaths, respectively.

Figure 7.10 presents trends in the annual rate of graft loss, calculated from a Cox model and adjusted for age, gender, race, and primary diagnosis. Patient follow-up is censored at December 31, 1999. In estimating graft survival, death is considered a graft failure. Graft survival probabilities are standardized to the 1997 patient population.
and the estimated percent graft failure is calculated as one minus the estimated graft survival probability for each year.

Reference Section F
Transplant counts are presented in Tables F.1–16. All known transplant events are included unless specified in the footnote, and all counts include non-Medicare patients.

Calculations of transplant rates per 100 patient years on dialysis begin in Table F.17, and include only patients reaching day 91 of ESRD service. All hemodialysis patients, peritoneal dialysis (CAPD/CCPD) patients, and patients on an unknown form of dialysis are included, as are all non-Medicare patients. Patients who died of AIDS or whose age is unknown at transplant are excluded. A patient's dialysis days are counted from the beginning of the specified year, or day one of ESRD dialysis therapy if treatment begins mid-year, until the first of transplant, death, or the end of the year. Patients lost-to-follow-up in a given year are not censored at the lost-to-follow-up date, but are followed until the end of the calendar year. Transplant rates are calculated as the number of transplant events divided by the total number of dialysis patient years for each year.

Table F.19, first transplant rates per 1,000 patient-years at risk, is calculated using a generalized mixed model to stabilize the rates (this model is detailed later in this appendix).

Table F.24 displays standardized first transplant ratios by state and territory for 1997–1999. A state's observed first transplant rate is compared to the rate expected from national rates for patients with similar characteristics, with the 1999 prevalent cohort (Table F.19) used as a reference. The standardized first transplant ratio is calculated as the ratio of the observed number of first transplants in the state to the expected number.

Reference Section G
This section presents graft survival probabilities for various demographic groups and lengths of follow-up. Patients are followed from the transplant date to graft failure, death, or the end of the follow-up period (December 31, 1999); death in this analysis is considered a graft failure. Because a minimum of one year of follow-up is needed, 1998 is the most recent year reported.

To produce a standard patient cohort for the graft survival analyses, patients with unknown age, gender, or race are omitted. Unknown age is defined as a missing age at transplant, or an age that was calculated to be less than zero or greater than or equal to 100. Patients are also excluded if their first ESRD service date is prior to 1977. Non-Medicare patients are excluded from all tables in this section due to the lack of follow-up information; the renal transplant counts presented here differ, therefore, from those in Section F.

Unadjusted survival probabilities are estimated with the Kaplan-Meier method and Greenwood's formula, while the Cox model is used for adjusted probabilities. Probabilities are adjusted for age, gender, race, and primary diagnosis, standardized to 1997 patient characteristics, and expressed as percentages from 0 to 100.

SURVIVAL, MORTALITY, & CAUSES OF DEATH · CHAPTER EIGHT & REFERENCE SECTIONS H & I
Chapter Eight
Figures in this chapter are created using the same methodologies and patient populations used in the related Reference Tables (described below); methods unique to the figures are discussed here.

Figure 8.1 presents adjusted incident and point prevalent rates of reported ESRD, and adjusted first-year death rates for all incident ESRD patients. The adjustment methods and death rate calculations used here and throughout the chapter are described in the Statistical Methods section of this appendix.

Figure 8.2 presents adjusted first-year death rates by state for 1998 incident dialysis patients. Residents of the 50 states, the District of Columbia, Puerto Rico, and the Territories are included, as are all non-Medicare patients. Patients whose gender or date of birth are missing in the database, or whose age is listed as greater than 120, are excluded. Patients are followed for one year from the date of their return to dialysis, and
are censored at a second transplant or a loss-to-follow-up. Residents of the 50 states, the District of Columbia, Puerto Rico, and the Territories are included, as are all non-Medicare patients, while patients whose gender or date of birth are missing, or whose age is listed as greater than 120, are excluded. Covariates include age, race, gender, primary diagnosis of diabetes, and prior time on ESRD. The stratum in the model is state, and the reference is the population distribution of all included patients from 1995 to 1998.

Table 8.1 reports expected remaining lifetimes by age, gender, race, and modality. These are calculated after excluding deaths due to AIDS, accidents (“accidents unrelated to treatment” on the ESRD Death Notification), and illegal drugs (“drug overdose (street drugs”)”, so the lifetimes reported correspond to hypothetical populations in which these causes of death do not occur.

The expected remaining lifetime for a patient group is the average of the life expectancies for the patients within that group. Some patients in the cohort will live longer than, and some less than, the average. Although the average cannot be known until all patients in the cohort have died, the expected remaining lifetime can be projected by assuming that patients in the cohort will die at the same rates as those observed among groups of recently prevalent ESRD patients.

For a subgroup of ESRD patients of a particular age, the expected remaining lifetime is calculated using a survival function, in turn calculated using the observed death rates. Let \(r(A) \) denote the death rate for a five-year age group, with \(A \) identifying one of the listed age ranges. Death rates for successive age intervals, \(r(A) \), are plotted versus age, \(A \), and the area under the curve up through age \(A \) is denoted by \(R(A) \). The survival function, \(S(A) \), at age \(A \) is the fraction of patients that would survive to age \(A \) in a hypothetical cohort subjected to these death rates throughout their lifetimes. The survival function at age \(A \) is related to the death rates by the equation \(S(A) = \exp(-R(A)) \), where “\(\exp \)” denotes the exponential function. Among patients alive at age \(A \), the fraction who survive for \(X \) more years is then \(S(A+X) = S(A) / S(A+X) \). For a given starting age, the expected remaining lifetime is then equal to the area under the curve of \(S(A) \) plotted versus \(X \). Because few patients live beyond 100, this area is truncated at the upper age limit \(A + X = 100 \).

Figures 8.16 and 8.17, each broken down by diabetic status, show the association of mortality and hematoctrit level for the 1994–1997 cohorts of incident hemodialysis and CAPD/CCPD patients. The cohorts analyzed for these graphs are defined by the year (1994–1997) of first ESRD service. Excluded from the analysis are patients living in the Territories, incident patients who did not survive 90 days after the onset of ESRD, and patients with fewer than four hematoctrit claims. All causes of death are included. For each incident cohort, data on patient characteristics, comorbidity, and disease severity are collected during the first six months (the entry period). Demographic characteristics include age, gender, and race, while comorbid conditions consist of atherosclerotic heart disease, congestive heart failure, peripheral vascular disease, cerebrovascular accident/transient ischemic attack, other cardiac arrest/transient ischemic attack, other conditions.

Collapsed cause of death categories used for Figures 8.14–15

<table>
<thead>
<tr>
<th>Category</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute myocardial infarction</td>
<td>Cardiac arrest, cause unknown</td>
</tr>
<tr>
<td>Cardiac, other</td>
<td>Atherosclerotic heart disease</td>
</tr>
<tr>
<td></td>
<td>Cardiac arrhythmia</td>
</tr>
<tr>
<td></td>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td></td>
<td>Pericarditis, including cardiac tamponade</td>
</tr>
<tr>
<td></td>
<td>Pulmonary edema due to exogenous fluid</td>
</tr>
<tr>
<td></td>
<td>Valvular heart disease</td>
</tr>
<tr>
<td></td>
<td>Cerebrovascular (CVF, CVA/TIA)</td>
</tr>
<tr>
<td></td>
<td>Cerebrovascular accident</td>
</tr>
<tr>
<td></td>
<td>Ischemic brain damage</td>
</tr>
<tr>
<td>Infection</td>
<td>AIDS</td>
</tr>
<tr>
<td></td>
<td>Fungal peritonitis</td>
</tr>
<tr>
<td></td>
<td>Hepatitis B</td>
</tr>
<tr>
<td></td>
<td>Infection, other</td>
</tr>
<tr>
<td></td>
<td>Other viral hepatitis</td>
</tr>
<tr>
<td></td>
<td>Pulmonary infection, bacterial</td>
</tr>
<tr>
<td></td>
<td>Pulmonary infection, fungal</td>
</tr>
<tr>
<td></td>
<td>Pulmonary infection, other</td>
</tr>
<tr>
<td></td>
<td>Septicemia, peritonitis</td>
</tr>
<tr>
<td></td>
<td>Septicemia, PVD/gangrene</td>
</tr>
<tr>
<td></td>
<td>Septicemia, vascular access</td>
</tr>
<tr>
<td></td>
<td>Septicemia, other</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis</td>
</tr>
<tr>
<td></td>
<td>Viral infection, CMV</td>
</tr>
<tr>
<td></td>
<td>Viral infection, other</td>
</tr>
<tr>
<td></td>
<td>Malignancy</td>
</tr>
<tr>
<td></td>
<td>Malignant disease, history of immunosuppressive treatment</td>
</tr>
<tr>
<td></td>
<td>Malignant disease, other</td>
</tr>
<tr>
<td></td>
<td>Other known causes</td>
</tr>
<tr>
<td></td>
<td>Accident related to treatment</td>
</tr>
<tr>
<td></td>
<td>Accident unrelated to treatment</td>
</tr>
<tr>
<td></td>
<td>Air embolism</td>
</tr>
<tr>
<td></td>
<td>Bone marrow depression</td>
</tr>
<tr>
<td></td>
<td>Cachexia</td>
</tr>
<tr>
<td></td>
<td>Chronic obstr. pulmonary disease</td>
</tr>
<tr>
<td></td>
<td>Cirrhosis</td>
</tr>
<tr>
<td></td>
<td>Complications of surgery</td>
</tr>
<tr>
<td></td>
<td>Dementia</td>
</tr>
<tr>
<td></td>
<td>Diabetic coma, hypo/hyperglycemia</td>
</tr>
<tr>
<td></td>
<td>Drug overdose</td>
</tr>
<tr>
<td></td>
<td>Drug overdose, street drugs</td>
</tr>
<tr>
<td></td>
<td>GI hemorrhage</td>
</tr>
<tr>
<td></td>
<td>Hemorrhage, dialysis circuit</td>
</tr>
<tr>
<td></td>
<td>Hemorrhage, ruptured vascular access</td>
</tr>
<tr>
<td></td>
<td>Hemorrhage, surgery</td>
</tr>
<tr>
<td></td>
<td>Hemorrhage, transplant site</td>
</tr>
<tr>
<td></td>
<td>Hemorrhage, vascular access</td>
</tr>
<tr>
<td></td>
<td>Hyperkalemia</td>
</tr>
<tr>
<td></td>
<td>Liver failure, cause unknown</td>
</tr>
<tr>
<td></td>
<td>Liver-drug toxicity</td>
</tr>
<tr>
<td></td>
<td>Mesenteric infarction/ischemic bowel</td>
</tr>
<tr>
<td></td>
<td>Other hemorrhage</td>
</tr>
<tr>
<td></td>
<td>Other identified cause</td>
</tr>
<tr>
<td></td>
<td>Pancreatitis</td>
</tr>
<tr>
<td></td>
<td>Perforation of bowel</td>
</tr>
<tr>
<td></td>
<td>Perforation of peptic ulcer</td>
</tr>
<tr>
<td></td>
<td>Polycystic liver disease</td>
</tr>
<tr>
<td></td>
<td>Pulmonary embolus</td>
</tr>
<tr>
<td></td>
<td>Seizures</td>
</tr>
<tr>
<td></td>
<td>Suicide</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Includes causes of death not recorded or no Death Notification form</td>
</tr>
</tbody>
</table>
diac disease, cancer, chronic obstructive pulmonary disease, and gastrointestinal disease. Severity of disease measures include the number of hospital days, blood transfusions, and vascular access procedures. Patients are followed until death, change of modality, transplant, loss-to-follow-up, or December 31, 1999, and are censored at change of modality, transplant, loss-to-follow-up, or December 31, 1999.

Figures 8.18–27 present relative risks of death by hematocrit level or URR for 1998 incident hemodialysis patients. The data set construction, patient population, variable definitions, and analytical methods are the same as those used in Figures 5.21–30.

Table 8.2 presents the relative risks of death by race for patient characteristics, comorbidity, disease severity, hematocrit, and URR, while Table 8.3 presents equivalent data by diabetic status. The data set construction and methods are same as those used in Tables 5.1 and 5.2.

Reference Section H

Table a.2

<table>
<thead>
<tr>
<th>Collapsed categories</th>
<th>Individual categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute myocardial infarction</td>
<td>Myocardial infarction, acute</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>Hyperkalemia</td>
</tr>
<tr>
<td>Pericarditis</td>
<td>Pericarditis, including cardiac tamponade</td>
</tr>
<tr>
<td>Atherosclerotic heart disease</td>
<td>Atherosclerotic heart disease</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td>Cardiac arrhythmia</td>
<td>Cardiac arrhythmia</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>Cardiac arrest, cause unknown</td>
</tr>
<tr>
<td>Pulmonary edema</td>
<td>Pulmonary edema</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Cerebrovascular accident including intracranial hemorrhage; ischemic brain damage/</td>
</tr>
<tr>
<td></td>
<td>anoxic encephalopathy</td>
</tr>
<tr>
<td>G.I. hemorrhage</td>
<td>Hemorrhage from transplant site; hemorrhage from vascular access; hemorrhage from</td>
</tr>
<tr>
<td></td>
<td>dialysis circuit; hemorrhage from ruptured vascular aneurysms; hemorrhage from</td>
</tr>
<tr>
<td></td>
<td>surgery; other</td>
</tr>
<tr>
<td>Septicemia</td>
<td>Septicemia, due to peritonitis; septicemia, due to peripheral vascular disease,</td>
</tr>
<tr>
<td></td>
<td>gangrene; septicemia, other</td>
</tr>
<tr>
<td>Pulmonary infection</td>
<td>Pulmonary infection (bacterial); pulmonary infection (fungal); pulmonary infection</td>
</tr>
<tr>
<td></td>
<td>(other); tuberculosis</td>
</tr>
<tr>
<td>Viral infection</td>
<td>Viral infection, CMV; viral infection, other; Hepatitis B; other viral hepatitis</td>
</tr>
<tr>
<td>AIDS</td>
<td>AIDS</td>
</tr>
<tr>
<td>Other infection</td>
<td>Infection, other; fungal peritonitis</td>
</tr>
<tr>
<td>Cachexia</td>
<td>Cachexia</td>
</tr>
<tr>
<td>Malignant disease</td>
<td>Malignant disease, patient ever on immunosuppressive therapy; malignant disease</td>
</tr>
<tr>
<td>Other cause</td>
<td>Pulmonary embolus; mesenteric infarction/ischemic bowel; liver-toxicity; cirrhosis;</td>
</tr>
<tr>
<td></td>
<td>polycystic liver disease; liver failure, cause unknown or other; pancreatitis;</td>
</tr>
<tr>
<td></td>
<td>perforation of peptic ulcer; perforation of bowel; bone marrow depression; dementia,</td>
</tr>
<tr>
<td></td>
<td>including dialysis dementia, Alzheimer’s; seizures; diabetic coma, hyperglycemia,</td>
</tr>
<tr>
<td></td>
<td>hypoglycemia; chronic obstructive pulmonary disease (COPD); complications of surgery;</td>
</tr>
<tr>
<td></td>
<td>air embolism; accident related to treatment; accident unrelated to treatment;</td>
</tr>
<tr>
<td></td>
<td>suicide; drug overdose (street drugs); other identified cause of death</td>
</tr>
<tr>
<td>Unknown cause</td>
<td>Unknown</td>
</tr>
<tr>
<td>Missing forms</td>
<td>Missing forms</td>
</tr>
</tbody>
</table>
the start of a lost-to-follow-up period, however; if a patient enters the lost-to-follow-up category during a calendar year, he or she remains in the death rate computation until the end of that year.

Patient cohort populations often overlap. Patients with a functioning transplant on the start day, for example, are included in the all-ESRD and all functioning transplant categories, while patients on dialysis are defined as both all-ESRD and all-dialysis. A patient in the all-dialysis category may also be reported in one of two subgroups—hemodialysis or CAPD/CCPD—if he or she has been on that modality for at least the previous 60 days. Dialysis patients who are not on hemodialysis or CAPD/CCPD, or who have been on that modality for less than 60 days, are included only in the all-ESRD and all-dialysis categories.

Both adjusted and unadjusted death rates for prevalent cohorts are reported for the following groups (definitions are the same as those used in the hospitalization analyses; see the discussion of Section E):

- all-dialysis; if a transplant occurs during or at the end of the year the period at risk is censored at the transplant date
- hemodialysis; if a transplant occurs during or at the end of the year the period at risk is censored at the transplant date
- CAPD/CCPD; if a transplant occurs during or at the end of the year the period at risk is censored at the transplant date
- functioning transplant: patients with a functioning transplant at the start of the period and who have had the transplant for at least 60 days; the period at risk is censored only at the end of the year
- all-ESRD; the period at risk is censored only at the end of the year

Patient populations for tables H.14–16 are the same as those used in Reference Section I. The population groups include all dialysis, hemodialysis, CAPD/CCPD, and first transplant (known cadaver and living only).

Methods

Generalized mixed models are used to calculate the smoothed rates in Tables H.2–6; these methods are described later in this Appendix, as is the method used to calculate the standardized mortality ratios (SMRs) in Table H.7. Death rates are reported for patient subgroups defined by age (nine groups), gender, race (white, black, Native American, and Asian), and primary diagnosis (diabetes, hypertension, glomerulonephritis, and other). Patients whose gender or date of birth is missing, or who are of other races, are excluded from these patient populations, while patients with no listed diagnosis are included in the “other” diagnosis group.

In Tables H.8–13 death rates are reported by primary cause of death among patients prevalent at the beginning of, or incident (defined as 90 days following the start of ESRD) during 1997, 1998, and 1999. Subgroups are characterized by age, gender, race, and modality at the beginning of each cohort year for prevalent patients or at 90 days of ESRD for incident patients. Dialysis patients are censored at transplant or the end of the calendar year, while transplant patients and patients in the all-ESRD category are censored only at the end of the calendar year. The death rate for a specific primary cause of death in each subgroup is obtained by dividing the total deaths from the primary cause by the subgroup’s total follow-up time. The sum of death rates for each specific cause in a subgroup is equal to the overall death rate of that subgroup. Death rates for collapsed categories of death (Table a.1) are presented in Tables H.8–12, while Tables H.a.1–4 list rates for each specific cause of death. Table H.13 presents rates by cause of withdrawal.

In Tables H.14–16 the adjusted first-, second-, and third-year death rates for incident cohorts—including all-dialysis, hemodialysis, CAPD/CCPD, and first transplant patients—are computed from the Cox model, described later in this appendix. First-year rates are computed from the 1989–1998 populations for each modality, second-year rates from the 1988–1997 populations, and third-year rates from the 1987–1996 populations. These death rates are presented using aggregate categories for age, gender, race, and primary disease, and a death rate presented for one of these variables is adjusted for the remaining three. Overall death rates for all patients are adjusted for each of the four variables; the death rates for Hispanic and non-Hispanic groups, however, are unadjusted raw rates. The reference is the distribution of age, gender, race, and primary diagnosis for each cohort.

Reference Section I

Patient population

These tables, which include only incident cohorts, present patient counts, counts of first renal transplants, and patient survival probabilities. All causes of death are included, as are all non-Medicare patients and patients living in the 50 states, the District of Columbia, Puerto Rico, and the Territories. Patients with unknown gender or age,
or whose age is listed as >110, are excluded from the patient cohorts.

Patient selection criteria are the same for both unadjusted and adjusted survival probabilities. All new ESRD patients with a first ESRD service date (for dialysis or transplant) between January 1, 1979, and December 31, 1998, are included in the analysis. These patients are followed until December 31, 1999, a maximum follow-up time of 15 years and a minimum of one year.

Results are reported for the following groups:

- all-ESRD: all ESRD patients beginning renal replacement therapy in a calendar year and surviving beyond day 90; patients are censored only at the end of follow-up
- 65 and over at start of ESRD: all ESRD patients age 65 and over who begin renal replacement therapy in a calendar year; patients are grouped in two-year periods to increase cell size, and are censored only at the end of follow-up
- dialysis only: all ESRD patients starting renal replacement therapy in a calendar year, surviving beyond day 90, and not receiving a transplant by day 91; patients are censored at transplant or at the end of follow-up
- first renal transplant (cadaveric): patients receiving their first transplant in a calendar year and for whom the donor is cadaveric
- first renal transplant (living): patients receiving their first transplant in a calendar year and for whom the donor is living

In both transplant categories, patients for whom the donor type is other or unknown are excluded. The cohort is defined by the year of first transplant, regardless of the year of first ESRD service. These patients are followed from the date of transplant (the date at which age is computed), and are censored only at the end of follow-up.

Methods

Unadjusted patient survival probabilities are estimated using the Kaplan-Meier method, while the Cox model is used for the adjusted probabilities. Unadjusted survival probabilities for Hispanics are new to this report.

To avoid excessive imprecision of the estimated survival probabilities due to small cell sizes, these probabilities are presented using aggregate categories for age, gender, race, and primary disease, and a probability presented for one of these variables is adjusted for the remaining three. Overall probabilities for all patients are adjusted for each of the four variables, as described later in the discussion of statistical methods. The reference is the distribution of age, gender, race, and primary diagnosis for each cohort, and the references are displayed in Table a.3.

Cardiovascular Special Studies · Chapter Nine

This chapter—new to this year’s edition of the ADR—addresses cardiovascular-related comorbidities for ESRD patients, the incidence of cardiovascular disease after the onset of ESRD, the use of evaluation tests before and after the first index of AMI, and the use of revascularization procedures following AMI in dialysis patients. Analyses of cardiovascular-related comorbidities are based on all ESRD patients, including non-Medicare patients, while analyses of the incidence of cardiovascular events and the use of evaluation procedures are restricted to incident dialysis patients who are Medicare-eligible on day 91 of ESRD, limiting the impact of non-Medicare patients with incomplete claims data. The start date of incident dialysis patients, day 91 of ESRD, must fall after the start date based on Medicare paid dialysis claims—the first day of the first month with at least $675 of Medicare paid dialysis claims. If a patient’s start date does not fall on this date, he or she is excluded from the analyses. A patient is also excluded if he or she did not survive at least 90 days after the first ESRD service date, underwent transplantation within 90 days of ESRD, and/or had missing age, gender, or race information. Missing age is defined as a missing date of birth or an age calculated to be less than zero or greater than 110.

<table>
<thead>
<tr>
<th>Table a.3 Reference population for Section I</th>
<th>One-year survival</th>
<th>Two-year survival</th>
<th>Five-year survival</th>
<th>Ten-year survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ESRD 1988-98 all ESRD</td>
<td>1987-97 all ESRD</td>
<td>1984-94 all ESRD</td>
<td>1979-89 all ESRD</td>
<td></td>
</tr>
<tr>
<td>Dialysis only 1988-98 dialysis</td>
<td>1987-97 dialysis</td>
<td>1984-94 dialysis</td>
<td>1979-89 dialysis</td>
<td></td>
</tr>
<tr>
<td>First transplant (living) 1988-98 (living)</td>
<td>1987-97 first transplant (living)</td>
<td>1984-94 first transplant (living)</td>
<td>1979-89 first transplant (living)</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A: Analytical Methods

Figures 9.1–4 present, for different populations, the distribution of cardiovascular-related comorbidities, including atherosclerotic heart disease (ASHD), congestive heart failure (CHF), cerebrovascular accident/transient ischemic attack (CVA/TIA), peripheral vascular disease (PVD), and other cardiac disease. The first occurrence date of each comorbidity is obtained from Part A institutional claims, REBUS inpatient data, and Part B physician/supplier claims. Comorbid conditions at initiation are determined from the Medical Evidence Form (HCFA 2728), in which CHF, CVA/TIA, and PVD can be found directly, ischemic heart disease, myocardial infarction, and cardiac arrest are grouped into ASHD, and cardiac dysrhythmia and pericarditis are combined into other cardiac disease.

Figures 9.1 and 9.2 compare patient comorbidity reported on the Medical Evidence Form at the initiation of ESRD service and that obtained from the two-year pre-ESRD claims data. A total of 82,508 incident ESRD patients from 1995 to 1997 were identified as being 67 years old or older at initiation, having claims information within two years prior to ESRD, and showing valid comorbidity information on the Medical Evidence Form. For each of the incident cohorts, the percent of patients who had ASHD, CHF, CVA/TIA, PVD, and/or other cardiac disease are computed from both the Medical Evidence Form and the claims data.

Figures 9.3 and 9.4 present the distribution of comorbidity in incident and prevalent ESRD patients, respectively. The incident population includes ESRD patients from 1995 to 1998 who survived at least nine months after the onset of ESRD, while the point prevalent population includes ESRD patients from the same time period who began ESRD service at least nine months before the point prevalent date. The figures show the percent of patients with claims for cardiovascular disease as of the end of the ninth month after ESRD (incident patients) or as of the point prevalent date.

Figures 9.5–22 describe the occurrence of cardiovascular disease among incident Medicare dialysis patients after the onset of ESRD. Patients are classified as having a particular disease as of the first date a related code appears in the claims: for arrhythmia, valvular disease, and cardiomyopathy, the date the ICD-9-CM diagnosis code first appears in Part A institutional and/or Part B physician/supplier claims files; for newly diagnosed CVA and TIA, the date the code first appears in Part A inpatient claims data to identify either a principal or secondary diagnosis. AMI and cardiac arrest are identified through ICD-9-CM diagnosis codes for the event or a death due to the event (codes for AMI appear in Part A inpatient claims, while those for cardiac arrest appear in Part A and/or Part B claims). Coronary revascularization is defined through ICD-9-CM procedure codes in Part A institutional claims files, while peripheral revascularization is defined through ICD-9-CM procedure codes in Part A claims and/or Current Procedural Terminology (CPT) codes in Part B claims data. Major amputation is identified through CPT codes in Part B physician/suppliers claims data. The codes used to identify patients with cardiovascular disease are as follows:

- arrhythmia: 426–427
- valvular disease: 394–396, 397.0, 424.0–424.3
- cardiomyopathy: 425
- cardiac arrest: 427.5
- AMI: 410, 410.X0, 410.X1
- newly diagnosed CVA: 430–434, 436–437
- TIA: 435
- coronary revascularization: 36.01, 36.02, 36.05, 36.06, 36.1X
- peripheral revascularization: 39.25, 39.29, 35452, 35454, 35456, 35458, 35459, 35470, 35473–35475, 35482–35485, 35492–35495, 35511, 35516, 35518, 35533, 35541, 35546, 35549, 35551, 35556, 35558, 35563, 35565, 35566, 35571, 35582, 35583, 35585, 35587, 35612, 35616, 35621, 35623, 35641, 35646, 35651, 35654, 35656, 35661, 35663, 35665, 35666, 35671
- major amputation: 23900, 23920, 24920, 24920, 24980, 25900, 25905, 25920, 25927, 27295, 27590, 27591, 27592, 27598, 27880, 27881, 27882, 27888, 27889, 28800, 28805

Figures 9.5–10 address cardiac disease among pediatric ESRD patients. Data for these figures include children under 20 years old who were incident Medicare dialysis patients from 1991 to 1996. Patients are followed from day 91 of ESRD until the first of death, transplant, loss-to-follow-up, or the end of 1999. Figures 9.8–10 present, by age, gender, and race, the incidence of cardiac arrest, valvular disease, arrhythmia, and cardiomyopathy during the first three-year follow-up period. Figure 9.7 shows the adjusted first three-year annual rate per 1,000 patient-years at risk for cardiac arrest, cardiac death, arrhythmia, and cardiomyopathy. The method of calculating adjusted rates is described in the discussion of statistical methods later in this appendix. The stratum in the Cox regression model is incident year, and covariates include age,
gender, race, and primary cause of renal failure. The reference is the population distribution of all included patients from 1991–1996.

Figures 9.11–22 present demographic data and adjusted rates per 1,000 patient-years at risk for all-cause mortality, cardiac morbidity and mortality, and combined events among incident Medicare dialysis patients from 1991 to 1998. Patients are followed from day 91 of ESRD to the earliest of death, transplant, loss-to-follow-up, or the end of 1999. The method used to compute the adjusted cardiovascular-related event rate is described later in the discussion of statistical methods. The stratum in the Cox regression model is incident year, and covariates include age, gender, race, and primary cause of renal failure. The reference is the population distribution of all included patients from 1991–1998 for the first-year event rate; from 1991–1997 for the second-year event rate; and from 1991–1996 for the third-year event rate.

Figures 9.23–28 describe the use of evaluation procedures in patients who had an AMI after the onset of ESRD. “Any stress test” is defined as the first stress echo, stress nuclear test, or stress ECG (based on the CPT codes in Part B physician/supplier claims), or a stress test (identified through ICD-9-CM procedure codes in Part A institutional claims data). Coronary angiography and/or catheterization are identified through the ICD-9-CM procedure codes in Part A institutional claims data. Coronary angiography and/or catheterization are identified through the ICD-9-CM procedure codes in Part A institutional claims or CPT codes in Part B claims files. Resting echocardiography tests are identified through CPT codes in Part B physician/supplier claims data, and lipid measurement through CPT codes in Part A institutional revenue claims data or Part B physician/supplier claims data. The codes used to identify patients with evaluation tests pre- and post-AMI are as follows:

- any stress test: 89.41–89.44, 93550, 78459, 78460, 78461, 78465, 78472, 78473, 78478, 78480, 78481, 78483, 78491, 78492, 93015–93018
- coronary angiography/catheterization: 88.53–88.57, 37.21–37.23, 93508, 93510, 93511, 93524, 93526, 93527, 93529, 93531, 93532, 93533, 93539, 93540, 93543, 93545, 93555, 93556
- resting echocardiography: 93303, 93304, 93307, 93308, 93312, 93320, 93321, 93325
- lipid measurement: 80061, 82465, 84478, 83715–83721

Figures 9.23(a)–28(a) present data on evaluation procedures and survival status within 30 days (six months for lipid tests) of AMI. All incident Medicare dialysis patients with AMI are divided into groups as follows, and the percent distribution is shown in the figures:

- patients receiving the procedure within 30 days and surviving longer than 30 days
- patients receiving the procedure before they died, underwent transplant, or were lost-to-follow-up within 30 days following AMI
- patients not receiving the procedure within 30 days and surviving longer than 30 days
- patients not receiving the procedure before they died, underwent transplant, or were lost to follow-up within 30 days following AMI

For patients who survived at least 30 days after AMI, the comparisons of patients receiving the evaluation procedure in the month before and the month following AMI are presented in Figures 9.23(b)–26(b). The pre-AMI evaluation procedure is the latest one before the onset of AMI, while the post-AMI procedure is the first one following that onset. Among the total number of coronary revascularization procedures used within 30 days after AMI, the percent use of percutaneous transluminal coronary angioplasty, stent, and coronary artery bypass are computed and presented in Figure 9.28(b).

PREVENTIVE HEALTH CARE MEASURES · CHAPTER TEN

Methods for determining screening rates for breast and cervical cancer, diabetic eye exams, and glycosylated hemoglobin testing (HbA1c) are taken directly from HEDIS® 2000 specifications (HEDIS® 2000 is a program of the National Committee for Quality Assurance, and is used to monitor the performance of managed health care plans). Because HEDIS® 2000 does not address prostate cancer or influenza vaccinations, algorithms for these analyses have been created by the USRDS. Screening rates are determined for both incident and prevalent ESRD patients.

Screening intervals for cervical and prostate cancer include the reporting year and the two prior years; for breast cancer, the reporting year and the prior year; for glycosylated hemoglobin, the reporting year only; for diabetic eye exams, the reporting year and the prior year if diabetes was not the cause of renal failure, otherwise, the reporting year only; and for influenza vaccinations, September 1 through December 31 of the reporting year.

Patients with Medicare as a secondary payor or not eligible for Medicare are omitted from all
analyses. Also omitted are those who have a missing date of birth, who did not survive the entire reporting year, who were ESRD less than 90 days prior to January 1 of the reporting interval, and, for diabetic eye exams and glycated hemoglobin screening, who are non-diabetic.

For the analysis of prostate cancer screening, patients are excluded if their claims contain any of the following ICD-9-CM procedure codes: 60.2, 60.21, 60.29, 60.3, 60.4, 60.5, or 60.62. Codes used to identify patients who receive screening include CPT-4 codes of 52601, 52612, 52614, 55801, 55810, 55812, 55815, 55821, 55831, 55840, 55842, 55845, and 84153; revenue codes of 0300 or 0310, associated with an ICD-9-CM diagnosis code of 185 or 233.4; and ICD-9-CM procedure codes of 60.11, 60.12, 60.18, 87.92, and 91.39.

In Figures 10.1 and 10.9 the numerator includes all patients receiving an influenza vaccination in the last four months of 1999, while the denominator includes all prevalent patients. Patients who receive flu vaccinations are identified through CPT codes of 90724, 90657, 90658, and 90659, and a HCPCS code of G0008.

Figures 10.2 and 10.6–10.8 display rates of development of cancers per 1,000 ESRD patient-years. ICD-9-CM codes used for breast cancer are: 198.81, 233.0, 174.XX, and 175.XX; for cervical cancer: 198.82, 233.1, and 180.XX; for prostate cancer: 198.82, 233.4, 233.9, and 185.XX.

Figure 10.12 shows the likelihood of hospitalization in January through March 1999 by whether or not a patient received an influenza vaccination from September through December 1998. Calculated percentages are adjusted for age, gender, race, prior ESRD time, and total hospital days during January through August 1998.

Figures 10.17–18 describe the use of diabetic testing supplies during 1999. HCPCS codes used to identify these supplies are A4250, A4253–55, E0607, E0609.

Figures 10.11 and 10.19–22 display lipid monitoring in diabetic and non-diabetic patients. CPT codes used to identify lipid monitoring are 80061, 82465, 83715–721, and 84478.

ECONOMIC COSTS OF ESRD · CHAPTER TWELVE & REFERENCE SECTION K

Chapter Twelve

Data in this chapter are calculated using several different analytical models. New to this year's ADR is the use, in the majority of the economic analyses, of the as-treated model, which replaces the intent-to-treat model used in previous editions. The as-treated model is described in detail in the discussion of Reference Section K, below.

HCFA MODEL

This model, described in the HCFA research report on ESRD (1993–1995), is used for Tables 12.6–8. With this method patients are classified into four mutually exclusive treatment groups:

- dialysis: ESRD patients who are on dialysis for the entire calendar year, or for that part of the year in which they are alive, ESRD, and Medicare entitled
- transplant: ESRD patients who have a kidney transplant during the calendar year
- functioning graft: ESRD patients who have a functioning kidney transplant for the entire calendar year, or for that part of the year in which they are alive, ESRD, and Medicare entitled
- graft failure: ESRD patients who have had a transplant, but returned to dialysis due to loss of graft function during the calendar year; patients with a graft failure and a transplant in the same calendar year are always classified in the transplant category

Patients are categorized as having Medicare as secondary payor on the basis of the “Primary payor amount” on Part A and Part B claims.

SIX-MONTH ENTRY MODEL

This model considers prevalent patients who survive on a given modality during the entry period (for these analyses, the first six months of 1998 and 1999). Patients are characterized using Medicare claims data from the entry period, and costs are aggregated for the follow-
up period (the last six months of 1998 and 1999), with patients censored at modality change, death, loss-to-follow-up, or the end of the follow-up period (December 31, 1998 or 1999). Patients who were MSP during 1998 or 1999 are excluded.

Methods
Table 11.1 in the Precis summarizes data on the costs of ESRD treatment. Total 1999 Medicare spending is calculated from the claims data, and includes all paid claims for ESRD patients in the USRDS database. Cost aggregation begins at the first ESRD service date for each patient. Total 1999 Medicare spending is inflated by 2% to account for incomplete claims, and organ acquisition costs are estimated with the same methods used in the 1999 ADR (149–150). HMO costs are estimated using the total HMO months for 1999, obtained from the HCFA managed care organization file, in conjunction with the 1999 AAPCC rate.

Non-Medicare spending by Employee Group Health Plans (EGHPs) is estimated by computing the per year at risk costs for EGHP and non-EGHP patients separately, then multiplying the difference by the EGHP years at risk for 1999. Patient obligations are estimated as 18% of the sum of Medicare payments, non-federal EGHP costs, and patient obligations (1999 ADR, 149). Because non-Medicare patients are estimated to constitute 7% of all ESRD patients in the U.S. (1999 ADR, Table ES-1), costs are estimated as 7% of the total costs of Medicare patients.

Changes in Medicare spending from 1998 to 1999 are taken directly from Table K.1, without the 2% adjustment for late claims. Per patient year at risk figures are based on patients who were never MSP during the study period (Tables K.18–19), again using non-inflated results. The apparent decrease in per patient per year costs is likely artifactual, and due to the absence of late claims affecting the 1999 claims dataset. The range for inflation-adjusted costs is calculated using the overall Consumer Price Index (2.7%) as well as the Medical Consumer Price Index (3.7%). The year-at-risk figures for modality during the 1995–1999 time period are taken directly from Table K.4; these figures include non-MSP patients only, and are not adjusted for late claims.

PMPM payments by hematocrit and URR are calculated using the six-month entry model. Data are obtained from outpatient dialysis claims, and only those patients with four or more EPO claims (Figures 12.10–11 and 12.13–14) or three or more claims with valid URR data (Figures 12.12–12.14) are included. The hematocrit range for each patient is based on the mean hematocrit for the six-month entry period, while the URR range is based on the median value from the same period. Claims are aggregated by month, and in the case of multiple claims per month only the last value of the month is used. The allowable costs presented in Figures 12.11–12 are adjusted using an ordinary least squares regression of log transformed PMPM with smearing estimate.

Information about the construction of other figures and tables is provided in the captions.

Reference Section K
Medicare Claims Data
The cost information in this section is derived from Medicare Part A and Part B (physician/supplier) claims data on the HCFA Standard Analytic Files, which are created annually six months after the end of each calendar year. The data for 1995 to 1999 comprise approximately 28 million institutional claims (hospital inpatient and outpatient facilities, outpatient dialysis facilities, skilled nursing facilities, hospice facilities, and home health agencies), as well as 213 million line items from physician/supplier claims. Claims data are obtained for all patient ID numbers in the USRDS database, and the Renal Beneficiary Utilization System (REBUS) is used to gather all HCFA ID numbers under which patients may have claims. The claims data are then merged with patient demographic data and modality information in the USRDS database.

The economic analysis for this reference section focuses on two amounts found in the claims data: the claim payment amount, which is the amount of payment made from the Medicare trust fund for the services covered by the claim record; and the pass-through per diem amount, which applies to inpatient claims and reimburses the provider for capital-related costs, direct medical education costs, and kidney acquisition costs. Chapter Twelve includes another dollar amount called Medicare Allowable, defined here as the amount of allowed charges for the services covered by the claim record. For institutional claims, this amount is calculated as the sum of the amounts from the Medicare payment, coinsurance, deductible, and any payment provided by a payor other than Medicare. For physician/supplier claims, the Medicare Allowable amount is provided by HCFA as a separate data element.
APPENDIX A • ANALYTICAL METHODS • 225

Payment Categories

Medicare payments are broken down into several categories, as shown in Table a.4. New this year, estimates of costs from the Outpatient SAF are derived for the individual services provided. Since actual payment amounts are provided only for the entire claim, cost estimates for dialysis, EPO, iron and so forth are calculated from the claim-level “Total Charge,” the payment amount, and the revenue line-level “Total Charge,” as follows: payment (line) = [total charge (line) / total charge (claim)] * payment (claim).

As-treated Model

In an as-treated model patients are initially classified by their modality at entry into the analysis, and they retain that classification until a change in modality occurs. When a modality change is encountered, the beginning modality is censored at the change date plus 60 days, and a new observation with the new modality is created. The first 60 days after a modality change are attributed to the previous modality in order to account for any carryover effects related to that modality. If the modality change is from dialysis to transplantation, the 60-day carryover period is not added to the dialysis modality, which is censored (and the transplant modality begins) on the date of the transplant hospital admission. In the case of changes involving only a new dialysis modality, the new modality must last at least 60 days in order to be counted. Aggregation of Medicare payments is done on an as-treated basis, attributing all payments to the patient’s modality at the time of the claim.

<table>
<thead>
<tr>
<th>Medicare payment categories</th>
<th>Basis for categorizing claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Sum of all payments</td>
</tr>
<tr>
<td>Total inpatient</td>
<td></td>
</tr>
<tr>
<td>Medical DRG</td>
<td>Inpatient SAF, DRG</td>
</tr>
<tr>
<td>Surgical DRG</td>
<td>Inpatient SAF, DRG</td>
</tr>
<tr>
<td>Transplant DRG</td>
<td>Inpatient SAF, DRG 302</td>
</tr>
<tr>
<td>Other DRG</td>
<td>Inpatient SAF, DRG not included in the above categories</td>
</tr>
<tr>
<td>Non-transplant pass-throughs</td>
<td>Inpatient SAF, DRG not 302, calculated from per diem and covered days</td>
</tr>
<tr>
<td>Transplant pass-throughs</td>
<td>Inpatient SAF, DRG 302, calculated from per diem and covered days</td>
</tr>
<tr>
<td>Total outpatient</td>
<td></td>
</tr>
<tr>
<td>Outpatient hemodialysis</td>
<td>Outpatient SAF, hemodialysis revenue codes</td>
</tr>
<tr>
<td>Outpatient peritoneal dialysis</td>
<td>Outpatient SAF, peritoneal dialysis revenue codes</td>
</tr>
<tr>
<td>Outpatient other dialysis</td>
<td>Outpatient SAF, dialysis revenue codes other than HD or PD</td>
</tr>
<tr>
<td>Outpatient EPO</td>
<td>Outpatient SAF, revenue codes and/or HCPCS code</td>
</tr>
<tr>
<td>Outpatient Calcijex</td>
<td>Outpatient SAF, revenue and HCPCS codes</td>
</tr>
<tr>
<td>Outpatient iron</td>
<td>Outpatient SAF, revenue and HCPCS codes</td>
</tr>
<tr>
<td>Outpatient other injectables</td>
<td>Outpatient SAF, revenue and HCPCS codes</td>
</tr>
<tr>
<td>Radiology</td>
<td>Outpatient SAF, revenue and/or CPT codes</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>Outpatient SAF, revenue codes</td>
</tr>
<tr>
<td>Ambulance</td>
<td>Outpatient SAF, revenue codes</td>
</tr>
<tr>
<td>Laboratory/pathology</td>
<td>Outpatient SAF, revenue and/or CPT codes</td>
</tr>
<tr>
<td>Outpatient other</td>
<td>Outpatient SAF, does not qualify for any other cost category</td>
</tr>
<tr>
<td>Skilled nursing facility</td>
<td>Skilled nursing facility SAF</td>
</tr>
<tr>
<td>Home health agency</td>
<td>Home health SAF</td>
</tr>
<tr>
<td>Hospice</td>
<td>Hospice SAF</td>
</tr>
<tr>
<td>Total physician/supplier</td>
<td>Sum of physician/supplier payments</td>
</tr>
<tr>
<td>Transplant surgery</td>
<td>Physician/supplier SAF, CPT codes</td>
</tr>
<tr>
<td>Inpatient surgery</td>
<td>Physician/supplier SAF, CPT and place of service codes</td>
</tr>
<tr>
<td>Outpatient surgery</td>
<td>Physician/supplier SAF, CPT and place of service codes</td>
</tr>
<tr>
<td>E&M nephrologist inpatient</td>
<td>Physician/supplier SAF, CPT, place of service and specialty codes</td>
</tr>
<tr>
<td>E&M non-nephrologist inpatient</td>
<td>Physician/supplier SAF, CPT, place of service and specialty codes</td>
</tr>
<tr>
<td>E&M non-nephrologist outpatient</td>
<td>Physician/supplier SAF, CPT, place of service and specialty codes</td>
</tr>
<tr>
<td>Dialysis capitation</td>
<td>Physician/supplier SAF, CPT and/or type of service codes</td>
</tr>
<tr>
<td>Inpatient dialysis</td>
<td>Physician/supplier SAF, CPT codes</td>
</tr>
<tr>
<td>Home dialysis</td>
<td>Physician/supplier SAF, HCPCS and place of service codes</td>
</tr>
<tr>
<td>Vascular access</td>
<td>Physician/supplier SAF, CPT codes</td>
</tr>
<tr>
<td>Peritoneal access</td>
<td>Physician/supplier SAF, CPT codes</td>
</tr>
<tr>
<td>Physician/supplier EPO</td>
<td>Physician/supplier SAF, HCPCS codes</td>
</tr>
<tr>
<td>Physician/supplier iron</td>
<td>Physician/supplier SAF, HCPCS codes</td>
</tr>
<tr>
<td>Immunosuppressive drugs</td>
<td>Physician/supplier SAF, HCPCS codes</td>
</tr>
<tr>
<td>Durable medical equipment</td>
<td>Physician/supplier SAF, HCPCS codes</td>
</tr>
<tr>
<td>Physician/supplier radiology</td>
<td>Physician/supplier SAF, CPT and specialty codes</td>
</tr>
<tr>
<td>Physician/supplier lab/path</td>
<td>Physician/supplier SAF, CPT codes</td>
</tr>
<tr>
<td>Physician/supplier ambulance</td>
<td>Physician/supplier SAF, HCPCS and place of service codes</td>
</tr>
<tr>
<td>Other physician/supplier</td>
<td>Physician/supplier SAF, does not qualify for any other category</td>
</tr>
</tbody>
</table>
Patients are classified in these tables into four as-treated modality categories: hemodialysis, CAPD/CCPD, other dialysis, and transplant. The "other dialysis" category includes cases in which the dialysis modality is unknown or is not hemodialysis or CAPD/CCPD, while the "transplant" category includes patients who have a functioning graft at the start of the period or who receive a transplant during the period. Some tables also include categories for all-dialysis (hemodialysis, CAPD/CCPD, and other dialysis) and all-ESRD (all-dialysis and transplant).

The study spans the five years from January 1, 1995 to December 31, 1999, and ESRD patients prevalent on January 1, 1995 or incident at any time during the period are potentially eligible for inclusion. The initial study start date for a given patient is defined as the latest of the following:

- January 1, 1995
- thirty days after the first ESRD service date in the USRDS database for that patient
- for dialysis patients, 30 days after the first month in which dialysis payments exceed $675

Because it is impossible to characterize the total cost of their care, patients for whom Medicare is the secondary payor (MSP) at any time during the study period, as determined from the Medicare Enrollment Database, are excluded from the analysis.

Medicare payments are aggregated from the modality start date until the earliest of death, transplant, modality change, loss-to-follow-up, or December 31, 1999 for each modality period. Dialysis patients are defined as lost-to-follow-up after a period of three consecutive months in which dialysis payments (institutional plus physician/supplier) fall below $675/month, and patients incurring no Part A or Part B Medicare costs for the entire period are excluded. Medicare payment amounts are linearly prorated for claims that span the start or end date of a modality period or of the study itself.

In order to express the costs as dollars per year at risk (YAR), total costs during the follow-up period are divided by the length of the follow-up period. Costs per year at risk are calculated by patient category, and stratified by age, gender, race, modality, and diabetic status. Diabetic status is based on the primary disease causing ESRD, as recorded on the Medical Evidence form. A patient with a non-diabetic cause of renal failure may have diabetes, but the disease is not judged to be the cause of ESRD. Patient age is calculated at the study start date, and patients with a missing date of birth are excluded from the analysis.

INTERNATIONAL COMPARISONS

CHAPTER THIRTEEN

The international dialysis and transplant data for 1999 have been collected from the following countries using a data form designed by the USRDS: the Australian and New Zealand Dialysis and Transplant Registry (ANZDATA), the Austria OEDTR, Belgium Etterbeek-Ixelles Etterbeek-Elsene, Bulgaria First Hemodialysis Centre, the Catalan Renal Registry, the Chilean Renal Registry, the Czech Society of Nephrology, the Estonian Society of Nephrology, the Finnish Registry for Kidney Diseases, the QuaSi-Niere in Germany, the Greek Hellenic Society of Nephrology, the Hungarian Transplant Registry, Landspitalinn (Iceland), the Israeli Renal Registry, the Japanese Society of Dialysis Therapy, the Latvian Renal Registry, the Norwegian Renal Registry, the Society of Dialysis in Russia, the Singapore Renal Registry, the Swedish Renal Registry, the United Kingdom Transplant Support Service Authority, the Uruguay Dialysis and Transplant Renal Registry, the Institute of Nephrology in Yugoslavia, and the USRDS. For all countries but the U. S., data prior to 1998 are taken from the 1993–1998 Annual Data Reports; 1998 data were collected for the 2000 ADR.

CENSUS POPULATION BASE

REFERENCE SECTION L

Census data in this section, which are used to calculate rates throughout the chapters and Reference Tables, are obtained from the United States Census Bureau. Updated population estimates are available at www.census.gov.

STATISTICAL METHODS

Methods for adjusting rates

DIRECT ADJUSTMENT

There are several rate adjustment methods, but only the direct method allows rates to be compared (Pickle LW, White AA). With this method the adjusted rate is derived by applying the observed category-specific rates to one standard population, i.e., the adjusted rate is a weighted average of the observed category-specific rates, using as the weight the proportion of each category in the reference population. This method is used to produce some of the incident and prevalent rates in Reference Sections A and B.

MODEL-BASED ADJUSTMENT

There are, however, some disadvantages to the direct adjustment method. If one category in a group has only a few patients, for example, the
death rate for this category will not be stable, making the adjusted death rate unstable as well. In addition, if one category in a group contains no patients, the adjusted death rate for this group cannot be calculated. A model-based adjustment is needed to overcome these disadvantages. In previous years we have simply run the models and substituted the average values from the reference for the covariates. Unless the model is linear, however, averaging on the covariates is not the same as averaging on the model. In this ADR we thus use models to predict death rates for each category in each group, and then use the direct adjustment method to calculate adjusted death rates based on predicted death rates with a given reference population. Standard errors are calculated using the bootstrap approach.

This method is used to calculate adjusted death rates, event rates based on the Cox regression model, and adjusted incident and prevalent rates based on the Bayesian spatial model. Adjusted survival probabilities are calculated by taking the exponential of negative adjusted death rates.

Because different adjusted event rates for different groups have different reference populations, these populations are identified in the relevant sections.

Kaplan-Meier unadjusted survival probabilities
The Kaplan-Meier method and Greenwood’s formula (Kalbfleisch JD, Prentice RL) are used to estimate unadjusted survival probabilities and standard errors in Chapters Six, Seven, and Eight, and Reference Sections G and I. Survival probabilities are expressed as percentages varying from 0 to 100.

Cox regression: adjusted survival probabilities
Because of the different mix of patients each year, unadjusted survival probabilities may not be comparable across cohort years. Adjusted analyses, however, make results comparable by reporting probabilities that would have arisen had each incident cohort contained the same distribution of age, gender, race, and primary diagnosis as the reference population. Adjusted survival probabilities, calculated using the model-based adjustment method described above, are reported in Reference Sections G and I, with age, gender, race, and primary diagnosis used as adjusting factors. Probabilities are estimated using the Cox regression model, stratified by year (Kalbfleisch JD, Prentice RL). Data are reported for all new ESRD patients, new ESRD patients over age 65, and new dialysis, cadaveric transplant, and living donor transplant patients. Graft survival rates are also reported for cadaveric and living donor transplants. This process yields estimates of the survival probabilities that would have arisen in each year for patients in the reference population. Since the probabilities in each table are adjusted to the same type of patients, any remaining differences among years are due to factors other than age, gender, race, and primary diagnosis.

Adjusted interval death rates
Adjusted one-, two-, and three-to-five year interval death rates, reported for incident cohorts in Chapter Eight and in Tables H.14–16, are estimated using the Cox regression and the model-based adjustment method. The interval death rate is estimated as the difference of cumulative death rates at the start and end of the interval, while the annual death rate is estimated by dividing the interval death rate by the length of the interval (in years), under the assumption that the death rates are constant over this period. Similar to the adjusted survival probabilities, the adjusted interval death rates are comparable across years within this ADR. This method was also used to calculate adjusted death rates and other event rates in Chapter Nine.

Generalized mixed model
The generalized mixed model with log link and Poisson distribution is used to calculate death rates, first admission (hospitalization) rates, and first transplant rates. While rates are reported only for 1999, three years of prevalent data (1997–1999) are used to improve the stability of the estimates.

The generalized mixed model, which considers both fixed and random effects, is implemented using the SAS® macro GLIMMIX (SAS® Version 8). The Poisson rates for the intersections of age, gender, race, and diagnosis are estimated using the log linear equation \(\text{Log} (\text{rate}) = (\text{fixed effects}) + (\text{random effect}) \). Fixed effect variables include year, age, gender, race, and diagnosis, and all two-way interactions between age, gender, race, and diagnosis. Assumed to be independently and identically distributed with a normal distribution, the random effect is the four-way interaction of age, gender, race, and diagnosis.

For the 2001 ADR we used a single model to calculate all rates in a single table for both intersecting and marginal groups, rather than the 16 models used previously. The marginal rates are simply the weighted averages of the estimated, cross-classified rates, with cell-specific patient
years as weights. Because the use of a single model means that GLIMMIX cannot give the standard errors for these computed rates, and because GLIMMIX does not take all variations into account for the intersecting group rates, we also used the bootstrap technique to calculate the standard errors. This method was used to calculate the prevalent death rates and first hospital admission rates, along with their standard errors, in Tables E.1–5, F.19, and H.2–6.

Standardized mortality ratio
The standardized mortality ratio (SMR) measures the mortality rate for a group of patients relative to the expected death rate for the group based on the death rate of the reference population.

In Table H.7, for example, SMRs are used to compare death rates for prevalent dialysis patients in each state from 1997 to 1999 to the national death rates of U.S. dialysis patients in 1999 (Table H.2). The SMR accounts for the age, gender, race, and diagnosis of the prevalent dialysis patients in each state. The expected number of deaths in each age, gender, and race intersection group of the observed population is calculated by multiplying the group-specific standard rates by the total follow-up time at risk of the observed patients in the group. The total expected number is then calculated by summing the expected numbers in each group, and the SMR is the ratio of the observed to the expected number of deaths. An SMR of 1.05 for a subgroup indicates that this group has a risk of death approximately five percent higher than that of the reference population.

Standardized first transplantation ratios (STRs) and first admission standardized hospitalization ratios (SHRs), calculated using similar methods, are reported in Tables F.24 and E.6.

Mapping methods
Mapping is an important tool for assessing environmental determinants and illustrating spatial patterns and temporal trends. Geographic resolution is enhanced by mapping at the level of small regions, but because this can increase data instability, smoothing methods are needed to stabilize the data. The methods described here have been used in the majority of maps presented in the Annual Data Report. Because the distribution of age, gender, and race in a population can affect ESRD incident and prevalent rates, we have also included maps that are adjusted for these variables as well as smoothed.

The majority of disease mapping within the ADR is by Health Service Area (HSA), an approach we have borrowed from the Atlas of United States Mortality (Centers for Disease Control and Prevention). Each HSA is a group of counties described by the CDC authors as “an area that is relatively self-contained with respect to hospital care.” In all maps HSAs have been divided equally among five ranges to help readers more easily interpret the information.

Throughout the ADR, data in maps and graphs are unadjusted unless noted. HSA-level information is mapped according to the patient’s residence, and, because of area size and limitations in the mapping software, data for the District of Columbia, Puerto Rico, and the U.S. Territories are not included in the maps.

Methods for smoothing & adjusting data
To smooth data we use both the Bayesian spatial model (Waller LA, Carlin BP, Xia H, Gelfand AE) and the weighted head-banging method (Tukey PA, Tukey JW; Mungiole M, Pickle LW, Simonson KH).

Bayesian spatial model
The Bayesian method, used for all maps in the ADR unless stated otherwise in the caption, is a statistical approach that uses the Poisson regression model to fit, for example, the incident rates of the regions. The relative risks for the regions, as random effects, follow the Conditional Autoregression (CAR) Normal distribution, and the precision of the relative risks has a Beta distribution (Waller LA, Carlin BP, Xia H, Gelfand AE). This model smooths the incident rate by borrowing information for each HSA from its neighbors through the relationship defined by CAR; neighbors, in our definition, are HSAs that share a boundary. The exponential offsets in the model are the internally standardized incident counts. Smoothed incident rates are obtained by dividing the predicted counts by the corresponding population sizes. For smoothed and adjusted maps, fixed effects of age, gender, and race were used in the Bayesian model. The smoothed and adjusted incidence rates are also calculated using the model-based adjustment method for each HSA, and are based on the smoothed rates for each category in each HSA from the Bayesian Spatial Hierarchical model, using the national population as reference.

Weighted head-banging method
This method for smoothing data in maps uses weighted medians from geographical neighborhoods. The surrounding neighbors of a given
region with value y (to be smoothed) are collected and paired so that they are located geographically in as straight a line as possible, with the region of interest located in the center. The weighted median l of the smaller values in all paired neighbors, and the weighted median u of the larger values, are defined (Mungiole M, Pickle LW, Simonson KH). If y is between l and u a new smoothed value for this region is assigned with value y; otherwise, it is assigned l or u or y, depending on their values and weights. This process is repeated iteratively until the differences between the new smoothed value and its previous value for all regions are within the pre-stated range. The population size of the corresponding region is usually used as the weight.

This method was used to smooth maps in Chapters Four, Eleven, and Twelve (its use is indicated in the captions), along with other maps that could not fit the Poisson model.

MISCELLANEOUS

Special studies & data collection forms

Copies of the HCFA Medical Evidence form (2728) and Death Notification Form (2746); of the UNOS Transplant Candidate Registration Form, Kidney Transplant Recipient Registration Form, and Kidney Transplant Recipient Follow-up Form; and of forms used for data collection in past USRDS special studies, are available on the USRDS web site at www.usrds.org.

Captions

Figure captions in the ADR provide descriptions of patient cohorts and data adjustment, along with other general information regarding the figures, and should be read in conjunction with the explanations provided in this appendix.

FUTURE DIRECTIONS OF THE USRDS

To improve and advance research on end-stage renal disease, the USRDS and its biostatistical team plan to investigate the following issues.

Spatial smoothing

High-resolution maps require smoothing in order to balance spatial focus with statistical stability. Because hierarchical models are more flexible and effective, the head-banging approach will be eliminated in future analyses, and the Bayesian hierarchical models adapted more fully to the needs of the USRDS. In this year’s ADR covariates are used as fixed effects for adjusting, and neighbors are defined as HSAs with common borders. In the future, we will investigate other spatial correlation structures, for example, including those which incorporate spatial distance in the correlation structure.

State-level adjusted incident rates

As mentioned in the section describing statistical methods, if one subgroup of a population contains only a few people the adjusted rate may not be stable. This instability occurred in our calculation of state-level adjusted incident rates (adjusted for age, gender, and race) due to the fine age groups and uneven distribution of races across the states. We have found that this problem persists even with the use of combined age groups and the removal of gender from the variables used for adjustment, and we will be investigating a model-based method to solve this problem.

Annual death rates & standard errors

For this year’s ADR the biostatistical team implemented plans to use one mixed-effect Poisson regression model to obtain estimated death rates, and to use the bootstrap method to obtain accurate standard errors. We have performed extensive goodness-of-fit tests, and plan to further evaluate this model during the next year.

Standardized mortality, transplant, & hospitalization ratios

Calculation of SMRs, STRs, and SHRs is discussed earlier in this Appendix. The current method uses a Poisson model, adjusting for age, gender, race, and diabetic status, to calculate expected mortality, transplant, and hospitalization rates. The particular statistical model used to compute expected values, as well as the variables included in the model for comorbidity and severity of disease adjustment, can have large effects on resulting ratios. During the next year, the biostatistical team will investigate the strengths and limitations of the current method.

Non-Medicare (‘ZZ’) patients

As discussed at the beginning of this appendix, the difficulties of identifying non-Medicare (‘ZZ’) patients lead to problems in calculating the actual number of patients with ESRD. Each non-Medicare patient is assigned a temporary Medicare Beneficiary Claim number (HIC/BIC) with ‘ZZ’ in the BIC field; this number is changed to a permanent HIC/BIC once the patient is eligible for Medicare entitlement. It is extremely important, therefore, for the USRDS to link all past services and new events so that records of these patients’ medical and treatment history can be accurately maintained and tracked. We plan to collaborate with HCFA to create a consistent methodology for reconciling the records of all
non-Medicare patients over the duration of their time on renal replacement therapy.

Dynamic web application

The USRDS currently maintains a Web site (www.usrds.org) with static pages of ESRD patient information that can be viewed and downloaded. To make this system more useful to researchers, and to allow users of the site immediate access to customized datasets, we are creating a dynamic query application system. This interactive system will include a menu of data request services varying in complexity from overall patient counts to individual rates by state and network, and will include the most recent information available on ESRD patients, updated on a quarterly basis. The initial version of the site will be available by the summer of 2001, and we hope that the completed site will become a fundamental resource for publishing and sharing information on ESRD patients in the United States.

BIBLIOGRAPHY

Network 1
Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, Vermont

Network 2
New York

Network 3
New Jersey, Puerto Rico, Virgin Islands

Network 4
Delaware, Pennsylvania

Network 5
Maryland, Virginia, Washington D.C., West Virginia

Network 6
Georgia, North Carolina, South Carolina

Network 7
Florida

Network 8
Alabama, Mississippi, Tennessee

Network 9
Indiana, Kentucky, Ohio

Network 10
Illinois

Network 11
Michigan, Minnesota, North Dakota, South Dakota, Wisconsin

Network 12
Iowa, Kansas, Missouri, Nebraska

Network 13
Arkansas, Louisiana, Oklahoma

Network 14
Texas

Network 15
Arizona, Colorado, Nevada, New Mexico, Utah, Wyoming

Network 16
Alaska, Idaho, Montana, Oregon, Washington

Network 17
American Samoa, northern California, Guam, Hawaii

Network 18
Southern California

Because of difficulties in identifying the network of California patients, Networks 17 and 18 are combined for the graphs included in this ADR, and are referred to as Network 17/18.
Appendix C · Glossary

Some of these definitions have been taken from Dorland's Illustrated Medical Dictionary and from the On-line Medical Dictionary (http://www.graylab.ac.uk/omd/index.html).

ABO blood group
The major human blood type system; important in the determination of blood donors and blood recipients.

Acquired immunodeficiency syndrome (AIDS)
An epidemic disease caused by the human immunodeficiency retrovirus that leads to immune system failure, infections, and severe weakening of the body.

Adjusted average per capita costs (AAPCC)
An estimate of how much Medicare will spend in a year for an average beneficiary.

Adult polycystic kidney disease (ADPKD)
An inherited disease in which the kidneys contain multiple cysts; can cause chronic renal failure.

Angioplasty
A procedure in which a balloon catheter is inserted into a blocked or narrowed vessel in order to re-open the vessel and allow normal flow through it.

Atherosclerotic heart disease (ASHD)
A disease of the arteries of the heart, characterized by a thickening and/or loss of elasticity of the arterial walls.

Blood urea nitrogen (BUN)
A by-product of the break-down of amino acids and endogenous and injested protein.

Body mass index (BMI)
A measure of height to weight ratio. BMI = Weight (kg) / Height (M2).

Conventional hemodialysis
Dialysis therapy using small surface area hemodialyzers that are made with conventional membranes and have low solute clearance and low fluid removal capabilities. This type of dialysis does not require the use of delivery systems with ultrafiltration control.

Coronary artery disease (CAD)
A disease that causes narrowing or occlusion of the arteries surrounding the heart.

Continuous ambulatory peritoneal dialysis (CAPD)
A type of dialysis in which dialysate is continuously present in the abdominal cavity. Fluid is exchanged by using gravity to fill and empty the cavity four to five times each day.

Continuous cycler-assisted peritoneal dialysis (CCPD)
A type of dialysis in which the abdominal cavity is filled and emptied of dialysate using an automated cycler machine.

Cancer
A disease that causes abnormal cell growth.

Cardiac arrest
A complete cessation of cardiac activity.

Cardiomyopathy
A general diagnostic term indicating a primary non-inflammatory disease of the heart muscle.

Cerebrovascular disease (CVD)
A disease that causes narrowing or occlusion of the arteries supplying the brain. Cerebral vascular accidents (CVA) and transient ischemic attacks (TIA) are two events that can result from this condition.

Common Working File (CWF) System
The Medicare Part A and Part B benefit coordination and claims validation system. Under the CWF, HCFA maintains both institutional and physician supplier claims-level data. CWF claims records are the data source for most claims and utilization files used by the USRDS.

Congestive heart failure (CHF)
A condition caused by ineffective pumping of the heart and subsequent fluid accumulation in the lungs.

Chronic obstructive pulmonary disease (COPD)
A progressive disease characterized by coughing, wheezing, or difficulty in breathing.

Clinical Performance Measures Project
Formerly the Core Indicator Project. A project cooperatively managed by HCFA and the ESRD Renal Networks that maintains a clinical database of key elements related to the quality of dialysis care. These elements are used as indicators in quality improvement initiatives.
Creatinine
A waste product of protein metabolism found in the urine and often used to evaluate kidney function. Abnormally high creatinine levels are seen in individuals with kidney failure or kidney insufficiency.

Creatinine clearance
Used as an indicator to predict the onset of uremia, which develops when the creatinine clearance falls below 10 ml/minute/1.73M2.

Death Notification Form (HCFA-2746)
A form submitted following the death of an ESRD patient, and containing basic patient demographic information in addition to information on the primary cause of death.

Diabetes mellitus, insulin dependent
A condition in which insulin is necessary to regulate abnormally high levels of glucose (sugar) in the blood.

Diagnosis Related Groups (DRGs)
Used by Medicare to determine payment for inpatient hospital stays; based on diagnosis, age, gender, and complications.

Dialysis Outcomes Quality Initiative (DOQI)
Established in 1995 by the National Kidney Foundation to improve patient outcomes and survival by providing recommendations for optimal clinical practices in the areas of dialysis adequacy, vascular access, and anemia.

Dialysis and transplant center
A facility that combines the functions of a dialysis center and a transplant center.

End-stage renal disease (ESRD)
A condition in which an individual's kidney function is not adequate to support life.

Erythropoietin (EPO)
A hormone secreted chiefly by the adult kidney; acts on the bone marrow to stimulate red cell production.

Freestanding unit
A dialysis unit licensed to provide only outpatient and home maintenance dialysis; sometimes referred to as an independent unit.

Glomerular filtration rate (GFR)
The rate at which the kidneys remove waste products from the blood.

Health Care Financing Administration (HCFA)
Federal agency that administers the Medicare, Medicaid, and State Children's Health insurance programs.

Health Plan Employee Data Information Set (HEDIS® 3.0)
Established by the National Committee for Quality Assurance, HEDIS® 3.0 is a set of standardized performance measures established to aid consumers in the comparison of managed healthcare plans.

Hepatitis
An inflammation of the liver that may be caused by a viral infection, poisons, or the use of alcohol or other drugs. The disease takes on many forms which include Hepatitis A, a form of the virus usually transmitted by contaminated food or water; Hepatitis B, more serious than Hepatitis A and transmitted through blood and body fluids; Hepatitis C, also transmitted through blood and body fluids; and Hepatitis D, which causes symptoms only when an individual is already infected with the Hepatitis B virus.

High-efficiency dialysis
Dialysis therapy that is provided using hemodialyzers with larger surface areas than conventional hemodialyzers. Enhanced solute clearance is achieved through increased blood flow rates of 300 to 400 milliliters per minute, allowing treatment times to be reduced to approximately three hours.

High-flux dialysis
Dialysis therapy provided using hemodialyzers with synthetic membranes and large surface areas that, combined with high blood and dialysate flow rates, allow enhanced solute clearance and fluid removal. Delivery systems with ultrafiltration control are required for this therapy.

Hospital center unit
A dialysis unit located in or attached to a hospital and licensed to furnish inpatient and outpatient dialysis plus diagnostic, therapeutic and rehabilitative services.

Hospital facility unit
A dialysis unit attached to or located in a hospital and licensed to provide outpatient dialysis services directly to ESRD patients.

Incident patient
A patient starting renal replacement therapy for end-stage renal disease during the calendar year. This definition excludes persons with acute renal
failure, persons with chronic renal failure who die before receiving treatment for ESRD, and persons whose ESRD treatments are not reported through HCFA.

Ischemic heart disease (ISHD)
A disease of the heart evidenced by a lowered oxygen supply to the heart tissue caused by occlusion or narrowing of the arteries supplying the heart muscle.

Kt/V
An indicator of the dose of dialysis received per treatment. Dose is calculated by multiplying the urea clearance (K) times the treatment duration (t) and dividing by the urea distribution (V). The urea distribution volume is approximately equal to the volume of total body water.

Medical Evidence Form (HCFA-2728)
A form which provides source data about ESRD patients, including information on patient demographics, primary cause of renal disease, comorbidity, laboratory values, dialysis treatment, transplant, dialysis training, employment status, and initial insurance coverage.

Myocardial infarction (MI)
An event which causes injury to the heart muscle, also called a heart attack.

National Claims History (NCH) 100% Nearline File
A file which contains all Common Working File (CWF) Part A (provider) and Part B (physician/supplier) Medicare claims and adjusted claims information.

Period prevalent patient
A patient receiving treatment for ESRD at some point during a period of time, usually six months or a year. Patients may die during the period or be point prevalent at the end of the period.

Peripheral vascular disease (PVD)
A progressive disease that causes narrowing or occlusion of the arteries supplying the extremities of the body.

Peritoneal dialysis
A type of dialysis in which fluid (dialysate) is introduced into the abdominal cavity and uremic toxins are removed across the peritoneum.

Point prevalent patient
A patient reported as receiving treatment for ESRD on a particular day of the calendar year (i.e. December 31st).

Program Medical Management and Information System for ESRD and Renal Beneficiary and Utilization System/Program (PMMIS/REBUS)
The major source of data for the USRDS. This HCFA file incorporates data from the Medical Evidence Form (HCFA-2728), the Death Notification Form (HCFA-2746), the Medicare Enrollment Database, HCFA Paid Claims Records, and the UNOS Transplant Database.

Prevalent patient
A patient receiving renal replacement therapy or having a functioning kidney transplant (regardless of when the transplant was performed). This definition excludes persons with acute renal failure, persons with chronic renal failure who die before receiving treatment for ESRD, and persons whose ESRD treatments are not reported through HCFA.

Pyrogen
A substance which is bacterial in nature and capable of producing low grade fevers.

Pyrogen reaction
A condition in which a patient who was afebrile prior to dialysis experiences a low-grade fever during dialysis, caused by pyrogens in the dialysate fluid. The fever disappears after dialysis is over, distinguishing the reaction from an actual infection.

REMIS/PMMIS
HCFA’s Renal Management Information System (REMIS)/Program Management and Medical Information System (PMMIS) is currently under development and is anticipated to replace the existing Renal Beneficiary and Utilization System (REBUS/PMMIS) in the summer of 2001. The first release, which will incorporate most of the capabilities, interfaces, and processes of the current system, will further support and improve data collection, validation, and analysis, and will provide timely and accurate information to the ESRD Networks, dialysis facilities, transplant centers, and research organizations. This new system will significantly improve support for ESRD program analysis, policy development, and epidemiological research.

Renal network
Established in 1978 as a provider oversight system that assures ESRD patients are provided immediate access to treatment and that the care they receive meets the highest quality standards.
Reuse
A process through which a hemodialyzer is cleaned and disinfected, allowing it to be used multiple times on the same patient.

Reuse germicide
A chemical used during the reuse process to disinfect the hemodialyzer.

SIMS
HCFA’s Standard Information Management System (SIMS), which became operational at the beginning of 2000. Supports the HCFA reporting requirements and business processes of the ESRD Networks; provides communication and data exchange links among the Networks, HCFA and other segments of the renal community to support quality improvement activities relating to the treatment of ESRD; supplies standard core data functionality for previous Network data systems; and provides improved electronic communication capabilities, data standardization, and information management tools.

Standard Analytical Files (SAFs)
HCFA files which contain final action Medicare Part A claims data. SAFs are comprised of eight files: Inpatient, Outpatient, Home Health Agency, Hospice, Skilled Nursing Facility, Clinical Laboratory, Durable Medical Equipment, and 5% Sample Beneficiary.

Standardized hospitalization ratio (SHR)
Selected group of patients by computing the ratio of the group’s observed hospitalization rate to the expected hospitalization rate for the national ESRD population.

Standardized mortality ratio (SMR)
Used to compare dialysis patient mortality rates from year to year. Mortality rates for a subgroup of patients are compared to a set of reference rates, with adjustments for age, race, gender, and diabetes as a cause of ESRD.

Standardized transplantation ratio (STR)
Used to compare the transplant rate of a subgroup of patients to the national transplant rate.

Transplant center
A hospital unit licensed to provide transplantation and other medical and surgical specialty services for the care of kidney transplant patients, including inpatient dialysis furnished directly or under arrangement.

United Network for Organ Sharing (UNOS)
A private, non-profit organization that maintains the organ transplant list for the nation and coordinates the matching and distribution of organs to patients awaiting transplant.

Urea reduction ratio (URR)
A means of measuring dialysis dose by calculating the change in BUN over the course of a dialysis treatment. URR = (pre-dialysis – post-dialysis BUN) / pre-dialysis BUN * 100.

Valvular heart disease (VHD)
A condition in which a patient has one or more abnormal heart valves.

Vintage
Time in years that a patient has had ESRD.

The VISION project
HCFA’s Vital Information System to Improve Outcomes in Nephrology (VISION) will provide customized data entry and reporting for the nearly 4,000 U.S. dialysis facilities, and will capture and securely communicate ESRD patient and provider data collected via the HCFA-2728, HCFA-2746, HCFA-2744, HCFA-820 and HCFA-821 forms for subsequent electronic reporting to the ESRD Network Organizations and HCFA. This project is designed to meet the goals of the Hemodialysis Facilities of Achievement Project (FOA) as outlined in the Federal Register (April 29, 1997) and is further mandated by the Balanced Budget Act (BBA) of 1997 to be implemented by the beginning of the year 2001.
Appendix D · USRDS Staff & Co-investigators

NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES (NIDDK)

Josephine Briggs, MD
Director, Division of Kidney, Urologic, and Hematologic Diseases (DKUHD)

Lawrence Y.C. Agodoa, MD
Co-Project Officer, USRDS; Director, End-Stage Renal Disease Program, DKUHD

Paul W. Eggers, PhD
Co-Project Officer, USRDS; Program Director, Kidney and Urology Epidemiology, NIDDK

Robert Coonley
Contracting Officer, Contracts Management Branch, NIH

Marlene Mireles
Contract Specialist, Cardiovascular Special Studies Center

HEALTH CARE FINANCING ADMINISTRATION (HCFA)

Pamela R. Frederick, MSB
HCFA Project Coordinator, USRDS; Technical Advisor for the ESRD Program, Quality Measurement and Health Assessment Group, Office of Clinical Standards and Quality (OCSQ)

Joel W. Greer, PhD
Social Science Research Analyst, Office of Strategic Planning

Jeffrey L. Kang, MD, MPH
Chief Medical Officer and Director, OCSQ

Roger Milam
Computer Specialist, Division of ESRD Systems and Contract Management, Information System Group, OCSQ

Ida Sarsitis
Director, Division of Contract Policy and Performance, Quality Improvement Group, OCSQ

Dennis Stricker
Acting Director, Information System Group, OCSQ

USRDS COORDINATING CENTER (CC), MINNEAPOLIS MEDICAL RESEARCH FOUNDATION

Allan J. Collins, MD, FACP
Director; Professor of Medicine, University of Minnesota School of Medicine; Nephrologist, Department of Medicine, Hennepin County Medical Center

Bertram Kasiske, MD
Deputy Director; Professor of Medicine, University of Minnesota School of Medicine; Chief of Nephrology, Department of Medicine, Hennepin County Medical Center

Delaney Berrini, BS
Assistant Editor, Administrative Assistant

Shu Chen, MS
Director of Information Systems and Software Development

Edward Constantini, MA
Associate Editor, Research Associate

Frederick Dalleska, MS
Senior Systems Analyst/Programmer

Stephan Dunning, BA
Geographic Information Systems

James Ebben, BS
Manager, Data Systems

Susan Eversen, PhD
Senior Editor, Research Associate

Beth Forrest, BBA
Administrative Assistant

Eric Frazier, BS
Systems Analyst/Programmer, Webmaster

David Gilbertson, PhD
Biostatistician

Dana Knopic, AAS
Administrative Manager

Roger Johnson
Senior Systems Analyst/Programmer

Shuling Li, MS
Biostatistician

Dennis Stricker
Acting Director, Information System Group, OCSQ
Jiannong Liu, MS
Biostatistician

Tricia Roberts, MS
Biostatistician

C. Daniel Sheets, BS
Senior Systems Analyst/Programmer

Jon Snyder, MS
Biostatistician

Jay Xue, DVM, PhD
Epidemiologist

Jennie Z. Ma, PhD
Assistant Professor, Department of Preventive Medicine, University of Tennessee College of Medicine

Willard Manning, PhD
Professor, Department of Health Studies, Harris School of Public Policy Studies, University of Chicago

Arthur Matas, MD
Professor, Department of Surgery, University of Minnesota School of Medicine

Marshall McBean, MD, MSc
Professor and Department Head, Department of Health Management and Policy, University of Minnesota School of Public Health

Wei Pan, PhD
Assistant Professor, Division of Biostatistics, University of Minnesota School of Public Health

Wendy L. St. Peter, PharmD, FCCP, BCPS
Associate Professor, University of Minnesota College of Pharmacy; Department of Medicine, Hennepin County Medical Center

CARDIOVASCULAR SPECIAL STUDIES CENTER
Charles Herzog, MD
Director; Staff Cardiologist, Department of Medicine, Hennepin County Medical Center; Associate Professor of Medicine, University of Minnesota School of Medicine

ECONOMIC SPECIAL STUDIES CENTER
Lawrence Hunsicker, MD
Director; Professor of Internal Medicine, University of Iowa College of Medicine
Table E.1 describes the products and services provided by the USRDS to support ESRD research and the work of the renal community.

The entire ADR is available on the Internet at www.usrds.org; included on the site as well are color slides of figures, a PDF file of the Researcher’s Guide, and USRDS contact information. In the future the site will allow users to create customized data sets and regional maps. Data on site use are presented in Figure E.1.

Dialysis unit-specific SMR/SHR reports
From 1996 through 1999 the USRDS produced more than 2,300 unit-specific reports each year, compiling information about the patients treated in each dialysis facility, and including Standardized Mortality Ratios (SMRs) and Standardized Hospitalization Ratios (SHRs). These reports are now being produced by the Kidney Epidemiology and Cost Center at the University of Michigan (www.med.umich.edu/kidney).

SMR/SHR spreadsheets
The USRDS produces Standardized Mortality Ratio (SMR) and Standardized Hospitalization Ratio (SHR) spreadsheets, available upon request. These spreadsheets allow comparison of the number of deaths or first hospitalizations for a specific subgroup of patients (e.g., the patients for a single dialysis facility) to national rates based on the actual mortality and hospitalization of U.S. dialysis patients. The SMRs and SHRs computed from these spreadsheets, however, are not directly comparable to those provided on the dialysis unit-specific mortality and hospitalization reports. The USRDS produces the national rates used to compute the expected number of deaths and hospitalizations in the spreadsheet, while the Kidney Epidemiology and Cost Center at the University of Michigan independently calculates the national rates used for the SMRs and SHRs in the unit-specific reports, and the two groups use REBUS files cut at different times. To request the USRDS spreadsheets, contact the USRDS Coordinating Center at usrds@usrds.org.

Data requests
Making information on ESRD available to the renal community is a primary objective of the USRDS, and we are committed to the timely fulfillment of data requests. In many cases these requests can be answered by providing data published in the ADR or elsewhere. Requests for data not available in material published by the USRDS, but that require two hours or less of staff time, are fulfilled by the Coordinating Center without charge, usually within one week. More complex requests—those requiring more than two hours of staff time—as well as requests for Standard Analysis Files and custom files, must be accompanied by a written proposal (see details below), and will be completed only upon written approval by the NIDDK Project Officer.

DATA FILES AVAILABLE TO RESEARCHERS
The Coordinating Center maintains a set of Standard Analysis Files (SAFs) to meet diverse
research needs and to provide easy access to the data used in the ADR. The SAFs were introduced in 1994, and at the same time NIDDK began awarding a new group of grants focusing on research using the USRDS data. The result has been an annual increase in the number of files provided by the USRDS.

Prior to 1994 all files provided to researchers were custom files created for a specific research project. Since the introduction of the SAFs, however, custom files are generally limited to cases in which a researcher provides a patient finder file to be matched with the USRDS database.

The Core SAF CD-ROM contains basic patient data and is needed in order to use any of the other SAFs. Included on this CD are each patient's demographic information, treatment history, limited transplant data, and all data from the USRDS Special Studies. Approximately half of the researchers using the USRDS SAFs need only this CD. Full transplant information is provided on a separate CD that contains detailed transplant and transplant follow-up data collected by HCFA and UNOS. Data on hospital inpatient stays is found on the hospitalization CD, and Medicare payment data is available either in a full set or by individual year. See Table e.2.

STANDARD ANALYSIS FILES (SAFs)

The use of the SAFs is governed by the USRDS “Policy on Data Release for Investigator-Initiated Research,” which appears later in this appendix. A researcher’s proposal must be approved by the USRDS Project Officer, and the researcher must sign the USRDS “Agreement for Release of Data” (see last page of appendix). Prices for these files are listed in Table e.3.

Most SAFs provide patient-specific data. All patient identifiers (name, address, Social Security number, etc.) are removed from the files or encrypted, but confidentiality of the data is still a

Table e.2

| Products & services for ESRD researchers & the general renal community |
|--------------------------|-------------------------|
| Products are provided without charge except as noted. |
serious concern. The “Agreement for Release of Data” therefore includes restrictions on the use and disposition of the SAFs. The SAFs do include an encrypted ID number to allow patient data from multiple SAFs to be merged when needed.

Core Standard Analysis File CD-ROM

The USRDS has carried out a number of Special Studies. Topics are approved by the NIDDK, with recommendations from HCFA, the USRDS Scientific Advisory Committee, the ESRD networks, and the Renal Community Council. For each study, design and sampling plans were developed, samples were selected, and data collection forms and instructions were drafted, tested, and finalized. The main studies are summarized below and detailed in the Researcher’s Guide.

This CD contains the most frequently used SAFs, including those from the USRDS Special Studies, and is needed for use of the Transplant CD, the Hospital CD, or any CD based on Medicare claims data. The files included on this Core CD are as follows (and are also listed in Table e.2):

Patient

Contains one record per patient in the USRDS database, and gives basic demographic and ESRD-related data.

Residence

Provides a longitudinal record, to ZIP code level, of each patient’s place of residence.

Treatment History

Also referred to as the Modality Sequence file; contains a new record for each patient at each change in treatment modality or dialysis provider.

Medical Evidence

Contains full data from the 1995 version of the HCFA Chronic Renal Disease Medical Evidence Form (HCFA-2728), the source of data about the primary disease causing renal failure and the start date of chronic renal dialysis. In April 1995 a new version of the form went into use that included data on comorbidity, employment status, lab values at start of dialysis, and Hispanic ethnicity.

Transplant

Contains basic data for all transplants, including graft failure date (detailed transplant data are contained on a separate transplant CD).

Transplant Waiting List

Includes one record for each patient in the USRDS database who also can be identified in the UNOS transplant waiting list file, and contains only the date on which the patient was first placed on the waiting list. Because of the complexity and variability of the patterns of patient movement on and off the waiting list, we have not attempted to derive more complex indicators of transplant waiting list experience.

Dialysis Morbidity & Mortality Study

The DMMS was an observational study in which data on demographics, comorbidity, laboratory values, treatment, socioeconomic factors, and insurance were collected for a random sample of U.S. dialysis patients, using dialysis records. Data was collected on 6,000 ESRD patients in each of Waves 1, 3, and 4 and 4,500 patients in Wave 2, a total of 22,500 patients over three years. Waves 1, 3, and 4 are each historical prospective studies in which data were collected for patients receiving in-center hemodialysis on December 31, 1993. Data were abstracted from the patient’s medical record and the patient was followed from December 31, 1993 through the earliest of data abstraction, death, transplant, change in modality, or transfer to another facility. Wave 2 is a true prospective study of incident hemodialysis and peritoneal dialysis patients for 1996.

Case Mix Adequacy Study

The objectives of the USRDS Case Mix Adequacy Study of Dialysis were to:

- Establish the relationship between the dose of delivered dialysis therapy and mortality
- Determine the strength of this relationship when data are adjusted for comorbidity
- Assess how this relationship changes at different dialysis doses
- Assess how this relationship is affected by dialyzer reuse
- Assess the impact of different dialysis membranes on patient morbidity and mortality

The study consisted of two groups of patients: an incident sample of ESRD patients who began hemodialysis during 1990, and a prevalent sample of hemodialysis patients with onset of ESRD prior to 1990. A total of 7,096 patients from 523 dialysis units were included, with approximately 3,300 patients having the pre- and post-BUN values needed to calculate delivered dialysis dose. Ninety-four percent of these cases were matched to the USRDS database. The ESRD Networks collected these data in conjunction with their Medical Case Review data abstraction.
The objectives of the USRDS Pediatric ESRD Growth and Development Study were to:

- establish a baseline for assessing the relation of pediatric ESRD patient growth and sexual maturation to modality
- establish a prototype for the ongoing collection of pediatric data

All patients who were prevalent in 1990 and born after December 31, 1970 were included in the study, a total of 3,067 patients at 548 dialysis units.

CAPD & Peritonitis Study

The USRDS CAPD and Peritonitis Rates Study examined the relation of peritonitis episodes in CAPD patients to connection device technology and other factors. The study population included all patients newly starting CAPD in the first six months of 1989, up to a maximum of 14 patients per dialysis unit. All units providing CAPD training participated in the study. The sample contains 3,385 patients from 706 units.
The HCFA ESRD Annual Facility Survey is the source of data for the Facility SAF, which can be linked to the Facility Cost Report files using the USRDS provider ID. Because of this link, geographic variables that could be used to identify facilities have been deleted. The survey period is January 1 through December 31.

Facility cost reports
The HCFA hospital and independent facility cost reports for the years 1989–1995 and 1989–1993 respectively are available as Standard Analysis Files. All geographic variables have been deleted in order to ensure confidentiality. The file may be linked with the Facility SAF by using the USRDS provider ID; geographic analyses at less than a regional or ESRD network level, however, are not possible. Because there has been minimal use of these files, data for additional years will be added only if there is sufficient demand.

Dialyzers
The Case Mix Severity, Case Mix Adequacy, and DMMS Special Studies all collected information on the manufacturer and model of the dialyzer used for a patient at a specific time. The SAFs for these studies describe the dialyzer only through a code, which must be matched to information in the Dialyzer file to find the manufacturer and model of the dialyzer along with characteristics such as membrane type and clearance. The data in this file come from published sources available at the time of the study. We believe these data accurately represent the dialyzer characteristics, but they should be used with caution.

Transplant CD
Due to changes in data collection sources over the years, data pertaining to transplants are now presented in six separate SAFs. The first two files are included on the Core CD, and the remaining four are included on the separate Transplant CD.

- TX: includes minimum details about all transplants from all sources
- TXWAIT: contains one record for each patient in the USRDS database who also can be identified on the kidney transplant waiting list maintained by the United Network for Organ Sharing (UNOS); the only variables are the date of first listing and USRDS_ID
- TXHCF: includes transplant details collected by HCFA’s PMMIS system prior to 1994
- TXUNOS: includes transplant details collected by UNOS, currently the main source of transplant data for the USRDS, for the years since 1987
- TXFUHCF: includes transplant follow-up reports collected by HCFA prior to 1994. Reports are completed at discharge, six months, each year post-transplant, and graft failure
- TXFUUNOS: includes transplant follow-up reports collected by UNOS since 1987.

The tables in Section F of the Reference Tables are produced primarily from the main and UNOS transplant files.

In July 1994 HCFA and the Health Resources Services Administration (HRSA) consolidated transplant data into a single collection by UNOS under its contract with HRSA. The expanded transplant data are shared among HRSA, HCFA, and the NIH and thus are available to the USRDS. This has resulted in the addition of data on a substantial number of non-Medicare transplant patients, including children.

The HCFA and UNOS transplant data files overlap for 1987–1993, and some Medical Evidence Forms and institutional claims records indicate transplants that are not included in either the HCFA or the UNOS file. As reported in Appendix A, the following procedure is used to resolve the conflicts among the four sources and create the transplant SAF. All UNOS transplants are first accepted into the file, with all HCFA transplants prior to 1987 accepted next. HCFA transplants from 1987–1993 are then accepted if there is no transplant in the file for that patient within 30 days of the HCFA transplant (it is common for the transplant dates to differ by one day between these two sources). Finally, transplants indicated on the Medical Evidence 2728 Form are accepted if no transplant is listed for that patient within 30 days of the Medical Evidence transplant date.

Hospital CD
Hospitalization inpatient data from the USRDS database are a subset of the data in the Institutional Claims file. No payment or cost variables are included on this CD. This CD is for researchers who need data on hospital inpatient stays and on diagnoses and procedures for those stays but who do not need payment data.

Dialysis Morbidity & Mortality CD
This CD contains files from the Dialysis Morbidity and Mortality Study and extracts data from all other SAFs for the patients in this study. All data on Medicare payments for these patients are followed to the currently reported claims year.
Case Mix Adequacy CD
This CD contains the Case Mix Adequacy Special Study file and extracts data from all other SAFs for the patients in this study. All data on Medicare payments for these patients are followed to the currently reported claims year. Along with analyses related to the study itself, this file is useful for developing analyses that will later be run on the full Medicare payments files.

CDs of Medicare payment data
Medicare payment data on institutional claims are available for pre-1989 through 1999, while data on physician/supplier claims are available for 1991–1999. The 1999 claims will be available along with other USRDS SAF CDs in summer 2001. These data sets can be purchased by year.

Institutional claims consist of all Part A claims (Inpatient, Outpatient, Skilled Nursing Facility, Home Health Agency, and Hospice) and some Part B claims, notably outpatient dialysis. All physician/supplier claims are Medicare Part B; these claims account for about 80 percent of the claims but only 20 percent of the dollars.

The structure and content of the two types of claims are different, as are the files derived from them. Institutional claims are provided in two file types: the Institutional Claims file, which indicates the type of claim, the dollar amounts, the DRG code, the type of dialysis involved (if any), and the dates of service; and the Institutional Claims Detail file, which contains details such as diagnosis and procedure codes. Many analyses will require only the Institutional Claims files.

Physician/supplier claims are contained in one type of file with one record for each claim line-item. The file includes dollar amounts, dates of service, diagnosis and procedure codes, and type and place of service.

File media and formats
The SAFs are provided on CD-ROM disks as SAS® (Statistical Analysis System) files, and can be used directly by SAS® on any 486 or Pentium PC with a CD-ROM reader.

A SAS® format was chosen for the USRDS SAFs because it is widely used, easily transported, and largely self-documenting. SAS® is a commercially available data management and statistical analysis software system that runs on most computers, from mainframes to PCs, and it is almost universally available on university computer

<table>
<thead>
<tr>
<th>Standard Analytical File CD-ROMs</th>
<th>Description</th>
<th>CDs</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core CD</td>
<td>The Core CD is needed in order to use any of the other CDs.</td>
<td>1</td>
<td>$500</td>
</tr>
<tr>
<td>Transplant CD</td>
<td>Detailed transplant data from HCFA and UNOS.</td>
<td>1</td>
<td>$100</td>
</tr>
<tr>
<td>Hospital CD</td>
<td>The Hospital CD is derived from the Institutional Claims and Institutional Claims Details CDs. It contains diagnosis and surgical procedure codes for each stay but does not include the cost data from the Institutional Claims records.</td>
<td>1</td>
<td>$100</td>
</tr>
<tr>
<td>DMMS claims CD set</td>
<td>The DMMS claims CD set contains all of the Institutional and claims data for the patients in the USRDS Dialysis Morbidity and Mortality Special Study. The data from the Special Study data collection forms are on the Core CD.</td>
<td>3</td>
<td>$300</td>
</tr>
<tr>
<td>Case Mix Adequacy claims CD</td>
<td>The Case Mix Adequacy Claims CD set contains all of the Institutional and Physician/Supplier claims data for the patients in the USRDS Case Mix Special Study. The data from the Special Study data collection forms are included.</td>
<td>1</td>
<td>$100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medicare payment data</th>
<th>Institutional Claims</th>
<th>Price</th>
<th>Physician/Supplier Claims</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years</td>
<td>Claims CDs</td>
<td>Details CDs</td>
<td>Price</td>
<td>Claims CDs</td>
</tr>
<tr>
<td>Before 1989*</td>
<td>1</td>
<td>1</td>
<td>$200</td>
<td>1</td>
</tr>
<tr>
<td>1989</td>
<td>1</td>
<td>1</td>
<td>$200</td>
<td>1</td>
</tr>
<tr>
<td>1991</td>
<td>1</td>
<td>2</td>
<td>$300</td>
<td>4</td>
</tr>
<tr>
<td>1992</td>
<td>1</td>
<td>2</td>
<td>$300</td>
<td>4</td>
</tr>
<tr>
<td>1993</td>
<td>1</td>
<td>2</td>
<td>$300</td>
<td>4</td>
</tr>
<tr>
<td>1994</td>
<td>1</td>
<td>2</td>
<td>$300</td>
<td>5</td>
</tr>
<tr>
<td>1995</td>
<td>1</td>
<td>3</td>
<td>$400</td>
<td>5</td>
</tr>
<tr>
<td>1996</td>
<td>1</td>
<td>3</td>
<td>$400</td>
<td>6</td>
</tr>
<tr>
<td>1997</td>
<td>1</td>
<td>3</td>
<td>$400</td>
<td>7</td>
</tr>
<tr>
<td>1998</td>
<td>1</td>
<td>3</td>
<td>$400</td>
<td>7</td>
</tr>
<tr>
<td>1999**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*CDs for years prior to 1989 included only hospital inpatient stays and quarterly summaries of outpatient dialysis; no cost data is included.

**The number of CDs for the Institutional claims and Physician/Supplier claims have not yet been determined. The total number of CDs, however, will be at least the same as in 1998, if not more. The unit price will remain the same.
systems. The USRDS SAFs take full advantage of the program’s ability to incorporate a large amount of documentation into the file.

Researchers who require a different program format or a medium other than CD-ROM will need to arrange for the conversion themselves. The USRDS also may be able to convert files to alternative formats or media, but the cost will be substantially greater.

What is needed to use the SAFs
- Computer: at a minimum, a 486 or Pentium PC. Smaller runs have been done on 486/100 PCs. The files can be converted to SAS® transport format for use on any computer with access to SAS®.
- CD-ROM drive: Any PC with a CD-ROM drive should be able to read the SAF CDs.
- Disk storage: Between 10 and 600 megabytes are needed for use of the Core CD, depending on the files being used. The data on each CD require from 550 to 650 megabytes of disk storage. Keep in mind that you will need space for temporary work files and for the files you create.
- Software: SAS®. Files converted to SAS® transport format can be used by SPSS.
- People with software experience: The SAF documentation provides some of the basics of loading the files into SAS® and using them, but further work with the files requires SAS® experience.

Cost
The price of the files covers the cost of reproducing and shipping the file and its documentation, the administrative cost of handling the sales, and the cost of technical support to researchers. Checks must be made payable to the Minneapolis Medical Research Foundation. These prices are subject to change.

Documentation
The Researcher’s Guide to the USRDS Database provides most of the documentation of the SAFs. It includes a codebook of variables on the files, copies of the data collection forms used by the Special Studies, and a chapter on techniques for using the SAFs in SAS®. Copies of the Researcher’s Guide may be downloaded from the USRDS website, or requested by phone or e-mail.

ACKNOWLEDGMENT FOR USE OF USRDS DATA
Publications that use USRDS data should include an acknowledgment and the following notice:

The data reported here have been supplied by the United States Renal Data System (USRDS). The interpretation and reporting of these data are the responsibility of the author(s) and in no way should be seen as an official policy or interpretation of the U.S. Government.

DATA RELEASE POLICY & PROCEDURE
Since the Standard Analysis Files and custom data files contain confidential, patient-specific data, release of these files requires the approval process described here. Investigators may contact the USRDS Project Officer at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) to discuss their requests before preparing a written proposal (see the list of USRDS contacts in the Forward). To request and use USRDS data files, investigators should do the following:
- Provide the USRDS Project Officer (PO) with a detailed description of the proposed investigation (see Table e.4). The project summary must include goals, background data, an in-depth description of the study

Table e.4
Suggested outline for research proposals using USRDS data

I	Research topic title and submission date
II	Background information
III	Study design
	Objectives
	Hypothesis
	Analytical methods
IV	Data being requested
	List Standard Analytical Files needed, or specify fields needed in custom data file
	Describe data security: responsible party, computer access, etc.
V	Investigator information
	For Principal Investigator and co-authors, supply:
	Name
	Affiliation
	Address
	Phone number
	Fax number
	Email address

Submit to:
Lawrence Y.C. Agodoa, MD
NIDDK
Democracy 2
6707 Democracy Blvd
Bethesda, MD 20892-5458
Phone 301.594.7717
Fax 301.480.3510
agodoal@extra.niddk.nih.gov

Paul Eggers, PhD
NIDDK
Room 615
6707 Democracy Blvd
Bethesda, MD 20892-5458
Phone 301.594.8305
Fax 301.480.3510
eggersp@extra.niddk.nih.gov
design and analytic methodology, and resources available for completing the project, and may be the project description from a grant or other funding application. The proposed project must comply with the Privacy Act of 1974, and the project summary should provide enough information to enable assessment of compliance. Guidelines for adherence to the Privacy Act are contained in the USRDS “Agreement for Release of Data,” provided at the end of this Appendix.

- Indicate which USRDS Standard Analysis Files will be needed. If the USRDS Standard Analysis Files cannot meet the requirements of the proposed research, the proposal must specify precisely which data elements are needed, and investigators must budget for a substantially higher cost.

- If the project is approved, return a signed copy of the USRDS “Agreement for Release of Data” to the PO. The investigator and the CC will resolve any technical questions. The investigator will arrange payment with the CC, and payment must be received before the files will be released. Checks must be made payable to the Minneapolis Medical Research Foundation.

The NIH will review the project for technical merit and conformity with the Privacy Act. The PO will notify the investigator(s) in writing of the outcome, and if the project is not approved will discuss reasons for the decision. The PO will send a copy of the approval letters to the USRDS CC. The process of reviewing the data request, generating the data file, and releasing the data will take the CC approximately three months.

When both a copy of the signed “Agreement for Release of Data” and payment for the files have been received by the USRDS CC, the CC will prepare the files and documentation and will send them to the investigator.

Any reports or articles resulting from use of the USRDS data must be submitted to the PO prior to submission for publication for review to assure adherence to the Privacy Act. The PO must respond within 30 days. If a report or article is determined not to adhere to the Privacy Act, it shall not be published until compliance with the Act is achieved. Assessment of compliance will not depend on the opinions and conclusions expressed by the investigators, nor will the PO’s approval indicate government endorsement of the investigator’s opinions and conclusions.

All publications using the released data must contain the standard acknowledgement and disclaimer presented above. The investigator is requested to send copies of all final publications resulting from this research to both the PO and the USRDS CC.

Caveats
This policy establishes conditions and procedures for the release of data from the USRDS and is intended to ensure that data are made available to investigators in the pursuit of legitimate biomedical, cost-effectiveness, or other economic research.

The USRDS will not release data that identify individual patients, providers, or facilities. Since it might be possible, however, to infer the identity of individual patients, providers, or facilities from the data in the Standard Analysis Files, the data in these files are considered confidential. The USRDS “Agreement for Release of Data” contains a number of both general and specific restrictions on the use of USRDS data, and investigators are expected to abide by these restrictions. If individually identifiable data are needed, the request should be submitted directly to the Health Care Financing Administration.

Use of these data to identify and/or contact patients, facilities, or providers on the files is prohibited both by USRDS policy and by the Privacy Act of 1974.

The USRDS CC will provide data in any of the usual media (tape, disk, or hard copy). Analytical services, other than review of the proposal and preparation of the data file, will not, however, be provided under the USRDS contract, although USRDS CC personnel may participate in analyses funded by other sources.

Standard Analysis Files or other data files from USRDS Special Studies will become available one year after the data have been collected, edited, and entered into the database.
United States Renal Data System (USRDS)
Agreement for Release of Data

In this agreement, "Recipient" means __
__

A. The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), through the United States Renal Data System (USRDS) Coordinating Center (CC), will provide the Recipient with tapes, disks, and/or hard copies containing data extracted from the USRDS research database.

B. The sole purpose of providing the data is the conduct of legitimate and approved biomedical, cost-effectiveness, and/or other economic research by the Recipient.

C. The Recipient shall not use the data to identify individuals on the file.

D. The Recipient shall not combine or link the data provided with any other collection or source of information that may contain information specific to individuals on the file, except where written authorization has been obtained through the approval process.

E. The Recipient shall not use the data for purposes that are not related to biomedical research, cost-effectiveness, or other economic research. Purposes for which the data may not be used include, but are not limited to,
- the identification and targeting of under- or over-served health service markets primarily for commercial benefit
- the obtaining of information about providers or facilities for commercial benefit
- insurance purposes such as redlining areas deemed to offer bad health insurance risks
- adverse selection (e.g., identifying patients with high risk diagnoses)

Any use of the data for research not in the original proposal must be approved by the USRDS Project Officer (PO).

F. The Recipient shall not publish or otherwise disclose the data in the file to any person or organization unless the data have been aggregated (that is, combined into groupings of data such that the data are no longer specific to any individuals within each grouping) and no cells (aggregates of data) contain information on fewer than ten individuals or fewer than five providers or facilities. The Recipient shall not publish or otherwise disclose data that identify individual providers or facilities, or from which such identities could be inferred. However, the Recipient may release data to a contractor for purposes of data processing or storage if (1) the Recipient specified in the research plan submitted to the USRDS Project Officer that data would be released to the particular contractor, or the Recipient has obtained written authorization from the PO to release the data to such contractor, and (2) the contractor has signed a data release agreement with the PO.

G. A copy of any aggregation of data intended for publication shall be submitted to the PO for review for compliance with the confidentiality provisions of this agreement prior to submission for publication and, if not approved, shall not be published until compliance is achieved. The PO must respond within 30 days.

H. Appropriate administrative, technical, procedural, and physical safeguards shall be established by the Recipient to protect the confidentiality of the data and to prevent unauthorized access to it. The safeguards shall provide a level of security outlined in OMB Circular No. A-130, Appendix III—Security of Federal Automated Information System, which sets forth guidelines for security plans for automated information systems in Federal agencies.

I. No copies or derivatives shall be made of the data in this file except as necessary for the purpose authorized in this agreement. The Recipient shall keep an accurate written account of all such copies and derivative files, which will be furnished upon request to the PO. At the completion of the activities in the research plan, the file shall be returned to the USRDS CC at the Recipient’s expense, and any derivative files and copies shall be destroyed.

J. Authorized representatives of the PO and/or of HCFA will, upon request, be granted access to premises where data in this file are kept for the purpose of inspecting security procedures and arrangements.
Recipient typed name, title, and organization

Recipient telephone number

Recipient signature & date

Contractor typed name, title, and organization, as appropriate

Contractor telephone number

Contractor signature & date

Lawrence Y. C. Agodoa, MD, NIDDK, NIH or
Paul W. Eggers, PhD, NIDDK, NIH

USRDS Project Officer typed name & organization

USRDS Project Officer signature & date

Revised June 1994