Admiral, there be whales here!

Scotty, Star Trek IV: The Voyage Home
funding. Production of this Annual Data Report (ADR) was solely funded through NH contract HHSN 267 2007 15002C / NOI-DK-7-2002 with the Minneapolis Medical Research Foundation (MMRF). Most contributors to this report are employed by MMRF with many of the physician investigators being employed by MMRF’s parent organization, Hennepin Healthcare System, Inc. MMRF has enacted conflict of interest (COI) policies and practices governing the conduct of research within the USRDS and of other research not related to the USRDS. In addition to internal controls, USRDS work is overseen by MMRF Project Officers, the USRDS Steering Committee, and the USRDS External Expert Panel. Listed here are those who contributed to the 2013 ADR. Unless otherwise noted in parentheses, the contributor’s employer was MMRF or its parent organization, Hennepin Healthcare System, Inc.

chapter contributors

DIRECTORS & CO-INVESTIGATORS
- Allan Collins, MD, FACP
- USRDS Director (entire ADR)
- Robert Foley, MD, MS, USRDS Deputy Director (entire ADR)
- Blanche Chavers, MD (University of Minnesota School of Medicine; Vol 2, Ch 8)
- David Gilbertson, PhD (entire ADR)
- Charles Herzog, MD (Vol 1, Ch 4; Vol 2, Ch 4)
- Kirsten Johansen, MD (University of California at San Francisco; Vol 2, Ch 9)
- Bertram Kasiske, MD (Vol 2, Ch 7)
- Nancy Kutner, PhD (Emory University; Vol 2, Ch 9)
- Suying Li, PhD (Vol 1, Ch 3; Vol 2, Precis & Chs 5 & 6; & 1 table)
- Jianhong Liu, PhD (maps; Vol 2, Ch 10)
- Wendy St. Peter, PharmD (Vols 1, Chs 5 & 7; Vol 2, Chs 6 & 11)
- Jon Snyder, PhD (Vol 2, Ch 7)
- Craig Solis, PhD (entire ADR)

STAFF
- Beth Forrest, BBA (Vol 2, HP2020, Ch 12)
- ADR production » Delaney Berini, BS (entire ADR)
- Edward Costantino, MA (entire ADR)
- Susan Everson, PhD (entire ADR)
- Biostatisticians » Haifeng Guo, MS (Vol 1, Ch 2; Vol 2, HP2020, Chs 2, 3, & 10)
- Yan Hu, MS (Vol 1, Ch 4; Vol 2, HP2020 & Ch 4)
- Allyson Katz, MS (Vol 1, Ch 1 & tables; Vol 2, HP2020)
- Shuting Li, PhD (Vol 1, Ch 4; Vol 2, HP2020 & Ch 4)
- Julia Molony, MS (Vol 1, Chs 2 & 6)
- Tricia Roberts, MS (Vol 1, Ch 3; Vol 2, Precis & Chs 3, 5, & 6 tables)
- Melissa Skea, MS (Vol 2, Precis, HP2020, Chs 1 & 7; & 1 table)
- Bryn Thompson, BA (Vol 2, Ch 7; & 1 table)
- Eric Weinhandl, MS (Vol 1, Ch 5; Vol 2, HP2020 & Chs 4 & 8)
- Hai Xiong, MS (maps)
- Akeem Yusuf, PhD (Vol 1, Chs 5 & 7; Vol 2, Chs 6 & 11)
- David Zaan, MS (Vol 1, Ch 2; Vol 2, Chs 2 & 10)

information systems & software development for all chapters, with additional work as noted: Cheryl Arko, BS. Shu-Cheng Chen, MS, MPH (Vol 2, Precis & Ch 1; & 1 table)
- Frank Daniels, BS. James Ebben, BS (Vol 1, Ch 2; Vol 2, Precis & Ch 10)
- Eric Frazier, BS (Vol 2, Precis, HP2020, Chs 1, 2, & 8; & 1, & 2, & 3, & 4 tables).

disclosures for potential conflicts of interest

Also, MMRF as an institution has separate contracts to conduct other, independent research funded by the Agency for Healthcare Research and Quality (via subcontract with Johns Hopkins University), Affymyx, Amgen, Concert, DaVita, Gilead, the Health Resources and Services Administration, Hennepin Healthcare System, Keryx, the National Institute on Aging/National Institutes of Health, the National Kidney Foundation, Novartis, NaStage, Ortho-Neal-Jansen, Questcor, Takeda, and Zoll Medical Corporation.

This twenty-fifth annual report of the United States Renal Data System is produced by the USRDS Coordinating Center, operated under NIH contract HHSN 267 2007 15002C / NOI-DK-7-2002 by the Minneapolis Medical Research Foundation. **Suggested citation for this report** U.S. Renal Data System, USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2013. **Publications based upon data reported here or supplied upon request must include this citation and the following notice.** The data reported here have been supplied by the United States Renal Data System (USRDS). The interpretation and reporting of these data are the responsibility of the author(s) and in no way should be seen as an official policy or interpretation of the U.S. government.
A map does not just chart, it unlocks and formulates meaning; it forms bridges between here and there, between disparate ideas that we did not know were previously connected.

Reif Larsen
The Selected Works of T.S. Spivet
<table>
<thead>
<tr>
<th>Volume One</th>
<th>ATLAS OF CHRONIC KIDNEY DISEASE IN THE UNITED STATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>guide to topics in the ADR</td>
<td>8</td>
</tr>
<tr>
<td>list of CKD figures & tables appearing each year</td>
<td>10</td>
</tr>
<tr>
<td>Volume One highlights</td>
<td>12</td>
</tr>
<tr>
<td>overview of CKD in the U.S.</td>
<td>14</td>
</tr>
<tr>
<td>introduction</td>
<td>18</td>
</tr>
<tr>
<td>chapters</td>
<td>23</td>
</tr>
<tr>
<td>reference tables: CKD</td>
<td>119</td>
</tr>
<tr>
<td>analytical methods</td>
<td>137</td>
</tr>
</tbody>
</table>

Précis

AN INTRODUCTION TO CKD IN THE U.S. | 23

One

CKD IN THE GENERAL POPULATION | 41

prevalence of CKD; comorbidity; awareness, treatment, & control; life expectancy

Two

IDENTIFICATION & CARE OF PATIENTS WITH CKD | 51

prevalence of recognized CKD; laboratory testing of patients at risk for CKD; probability & odds of a CKD diagnosis code; probability & odds of seeing a physician after diagnosis

Three

MORBIDITY & MORTALITY IN PATIENTS WITH CKD | 63

hospitalization rates; rehospitalization; mortality rates

Four

CARDIOVASCULAR DISEASE IN PATIENTS WITH CKD | 73

cardiovascular disease, intervention, & survival; medication use; heart failure

Five

PART D PRESCRIPTION DRUG COVERAGE IN PATIENTS WITH CKD | 83

part d enrollment patterns in patients with CKD; part d coverage plans; costs of part d enrollment; coverage phase analyses; prescription drug therapy in CKD & ESRD patients

Six

ACUTE KIDNEY INJURY | 95

characteristics of patients with AKI; hospitalization for AKI; patient care & outcomes; changes in CKD status following AKI

Seven

COSTS OF CKD | 107

trends in costs of CKD; part d costs; drug utilization; expenditures during the transition to ESRD
Volume Two

ATLAS OF END-STAGE RENAL DISEASE IN THE UNITED STATES

- list of ESRD figures & tables appearing each year • 156
- ESRD program highlights • 158
- overview of ESRD in the U.S. • 160
- hospitalization & Part D use in the ESRD population • 162
- introduction • 164
- chapters • 169
- reference tables: ESRD • 145
- analytical methods • 421
- USRDS products & services • 454
- glossary • 461
- CMS forms • 469
- data requests • 454
- agreement for release of data • 465
- merged dataset agreement for release of data • 467

One

INCIDENCE, PREVALENCE, PATIENT CHARACTERISTICS, & TREATMENT MODALITIES • 215

- incident counts & rates; incident rates & racial differences; prevalent counts & rates; incident & prevalent modality; patient characteristics

Two

CLINICAL INDICATORS & PREVENTIVE CARE • 229

- anemia treatment by modality; preventive care; vascular access

Three

HOSPITALIZATION • 237

- admission rates & hospital days; hospital admissions: infection; hospital admissions: cardiovascular; rehospitalization

Four

CARDIOVASCULAR DISEASE • 249

- diagnosis of cardiovascular disease; cardiac events & rates of sudden cardiac death; pharmacological interventions; body mass index & cardiac death; bariatric surgery; heart failure

Five

MORTALITY • 263

- mortality & survival; mortality in the general & ESRD populations

Six

PART D PRESCRIPTION DRUG COVERAGE IN ESRD PATIENTS • 271

- Part D enrollment patterns; Part D coverage plans; overall costs of Part D enrollment; coverage analysis & antibiotic use; bone & mineral medication use pre- & post-bundle

Seven

TRANSPLANTATION • 283

- wait list; donation; transplant; outcomes; follow-up care; Part D medications in kidney transplant recipients

Eight

PEDIATRIC ESRD • 295

- ESRD diagnosis in the pediatric population; incidence of ESRD; vaccinations; hospitalization; mortality; mean hemoglobin; medication use

Nine

REHABILITATION/QUALITY OF LIFE & NUTRITION SPECIAL STUDIES • 307

- active/adipose study; frailty index

Ten

ESRD PROVIDERS • 315

- provider growth; preventive care; treatment under the dialysis composite rate; standardized hospitalization & mortality ratios

Eleven

COSTS OF ESRD • 325

- overall & per person per year costs of ESRD; Part D costs by low income subsidy & provider

Twelve

INTERNATIONAL COMPARISONS • 333

- worldwide view of the incidence of ESRD; incidence of ESRD; prevalence of ESRD; dialysis; transplantation
guide to topics
in the annual data report

populations

NHANES
CKD (vol 1): Chapter 1
new patients
ESRD (vol 2): p.a, hp-8, hp-9, Chapter 1, 8.1–4
existing patients
CKD (vol 1): 1.a, 2.1–4, 2.a–b; **ESRD** (vol 2): p.a, Chapter 1
transplant patients
ESRD (vol 2): Chapter 7
CKD datasets
CKD (vol 1): 2.a–b, 2.2–4
Pediatric patients
ESRD (vol 2): Chapter 8
International comparisons
ESRD (vol 2): Chapter 12
Part D prescription drug coverage
CKD (vol 1): Chapter 5, 7.9–18, 7.a–b; **ESRD** (vol 2): Chapter 6, 7.29–35, 7.a–b, 11.10–16

diseases

Identifying CKD
CKD (vol 1): Chapters 1 & 2
Anemia
ESRD (vol 2): 1.23–24, 1.g
Infections
CKD (vol 1): 3.6, 3.13; **ESRD** (vol 2): 3.1, 3.a, 3.4–8, 5.3, 8.9, 8.12
Cardiovascular disease
CKD (vol 1): 3.5, 3.10, 3.13, Chapter 4;
ESRD (vol 2): 3.1, 3.3, 3.a, 3.9–13, Chapter 4, 5.3
Diabetes
CKD (vol 1): Chapter 1; **ESRD** (vol 2): hp-9, 1.7–8, 1.15, 1.d–g
Acute kidney injury
CKD (vol 1): Chapter 6
Treatment

- Preventive care & laboratory testing: CKD (vol 1): Chapter 2; ESRD (vol 2): 1.f–g, 2.14–17, 2.a, 7.28, 8.5–6, 10.4–6
- Awareness, treatment, & control: CKD (vol 1): 1.b
- Physician care & follow-up care: CKD (vol 1): 2.c, 2.9–12, 2.g–i; ESRD (vol 2): hp-3, hp-4, hp-5, hp-10, 1.f, 1.22
- Anemia treatment: ESRD (vol 2): 1.23, 2.3, 2.5–7, 8.14–16, 10.7–8
- Vascular access: ESRD (vol 2): hp-11, 2.18–20
- Transplantation: ESRD (vol 2): hp-12, hp-13, Chapter 7
- Cardiovascular procedures: CKD (vol 1): 4.a; ESRD (vol 2): 4.a, 4.2–3

Outcomes

- Hospitalization: CKD (vol 1): 3.1–13; ESRD (vol 2): Chapter 3, 7.21–22, 8.7–9, 10.9–12
- Mortality: CKD (vol 1): 3.1, 3.8–17, 3.c, 4.d; ESRD (vol 2): hp-14, 4.1, 4.7–11, Chapter 5, 7.17–18, 7.26, 8.10–12, 10.9–12
- Standardized hospitalization ratios/standardized mortality ratios: ESRD (vol 2): 10.9–12

Costs

- Part D: CKD (vol 1): 5.9–11, 5.d, 7.9–18, 7.b; ESRD (vol 2): 6.9–12, 6.d, 6.16–18, 11.10–16
- Overall: CKD (vol 1): Chapter 7; ESRD (vol 2): Chapter 11

Data Analysis

- Analytical methods: CKD (vol 1): pg 137; ESRD (vol 2): pg 421
- Data files available to researchers: pg 454
- Agreements for release of data: pg 465
data on chronic kidney disease appearing each year in the annual data report

chapter one
1.1 distribution of nhanes participants with diabetes, cardiovascular disease, & markers of ckd
1.a prevalence of ckd in nhanes participants, by age, gender, race/ethnicity, & risk factor
1.b awareness, treatment, & control of hypertension, hyperlipidemia, hdl, total cholesterol, & diabetes

chapter two
2.a descriptive parameters of ckd datasets, by age, gender, race/ethnicity, & coded comorbidity
2.b prevalence of recognized ckd, by dataset, year, & age
2.2 trends in ckd prevalence: medicare patients age 65 & older, by race
2.5 probability of urine albumin & creatinine testing in medicare patients at risk for ckd
2.c probability of laboratory testing in patients at risk for ckd, by demographic characteristics
2.d percent of patients with ckd, by demographic characteristics, comorbidity, & dataset

chapter three
3.14 all-cause mortality rates in medicare ckd & non-ckd patients
3.c adjusted mortality rates in medicare patients, by ckd diagnosis code
3.6 adjusted rates of hospitalization for infection, by dataset & ckd diagnosis code
3.5 adjusted rates of hospitalization for cardiovascular disease, by dataset & ckd diagnosis code
3.2 adjusted hospitalization rates in medicare patients, by ckd diagnosis code
2.9 cumulative probability of a physician visit at month 12 following ckd diagnosis, by physician specialty & dataset
2.8 cumulative probability of a physician visit at month 12 after ckd diagnosis
2.7 cumulative probability of a physician visit at month 12 after a ckd diagnosis code of 585.3 or higher
chapter five

5.2–4 sources of prescription drug coverage in Medicare enrollees
5.a percent of Part D enrollees with or without the low income subsidy (LIS), by age & race
5.b Part D benefit parameters
5.11 ppppy Part D costs for Medicare enrollees, by LIS status
5.d total per person per year costs for Part D enrollees, by LIS status
5.e twelve-month probability of reaching the coverage gap in Part D non-LIS enrollees
5.13 Part D CKD patients with at least one claim for an ACEI/ARB/renin inhibitor, by CKD diagnosis code
5.14 Part D CKD patients with at least one claim for a beta blocker, by CKD diagnosis code

chapter six

6.1 patients with at least one recognized AKI event, with or without dialysis, by race
6.2 characteristics of patients with AKI
6.3 rates of AKI
6.9 probability of a recurrent AKI hospitalization in Medicare patients, by number of recurrent events & race
6.13 outpatient physician visits following initial AKI discharge
6.16–17 probability of serum creatinine & urine albumin testing after hospitalization for AKI

chapter seven

7.1 point prevalent distribution & annual costs of Medicare (fee-for-service) patients, age 65 & older, with diagnosed diabetes, CHF, & CKD
7.5 overall expenditures for CKD in the Medicare population
7.18 top 15 drugs classes used by Part D enrollees with CKD, by net costs & drug class, 2011
7.18 top 15 drugs used by Part D enrollees with CKD, by percent of patients & net cost
highlights of volume one

patients

6.7% prevalence of spot eGFR < 60 in NHANES 2005–2010 participants (CKD-EPI formula; Table 1.a)
 among those with self-reported diabetes: 20.4%
 among those with cardiovascular disease: 27.9%

9.4% prevalence of spot ACR ≥ 30 in NHANES 2005–2010 participants (Table 1.a)
 among those with self-reported diabetes: 30.8%
 among those with cardiovascular disease: 24.3%

10.0% prevalence of recognized CKD in Medicare patients age 65 & older, 2011 (Table 2.b & Figure 2.2)
 white: 9.3% • black/African American: 14.7%
 Native American: 11.0% • Asian: 10.4%

patient care

85% hypertension among NHANES 2005–2010 participants with eGFR < 60 (CKD-EPI formula; Table 1.b)

32% NHANES 2005–2010 participants with eGFR < 60 whose hypertension is treated & controlled (CKD-EPI formula; Table 1.b)

81% hyperlipidemia among NHANES 2005–2010 participants with eGFR < 60 (Table 1.b)

27% NHANES 2005–2010 participants with diabetes & eGFR < 60 whose hyperlipidemia is treated & controlled (Table 1.b)

42% NHANES 2005–2010 participants with diabetes & eGFR < 60 whose diabetes is uncontrolled (Table 1.b)

37% probability of urine albumin testing in Medicare patients with diabetes and hypertension (Figure 2.5)

0.57 cumulative probability of a nephrologist visit at month 12 after a CKD diagnosis of 585.3 or higher, 2011: Medicare patients age 65 & older (Table 2.h)

0.54 cumulative probability of a nephrologist visit at month 12 after a CKD diagnosis of 585.3 or higher, 2011: Truven Health MarketScan patients age 50–64 (Table 2.h)

52% percent of CKD patients with CHF receiving ACEIs/ARBs (Table 4.b)
outcomes

422 adjusted hospitalization rate in white Medicare ckd patients age 66 & older, 2011 (admissions per 1,000 patient years; Figure 3.3)

 Stages 1–2: 362 • Stage 3: 417 • Stages 4–5: 577

467 adjusted hospitalization rate in black/African American Medicare ckd patients age 66 & older, 2011 (admissions per 1,000 patient years; Figure 3.3)

 Stages 1–2: 424 • Stage 3: 439 • Stages 4–5: 576

74 adjusted mortality rate in white Medicare ckd patients age 66 & older, 2011 (deaths per 1,000 patient years; Table 3.c)

 Stages 1–2: 63 • Stage 3: 65 • Stages 4–5: 101

73 adjusted mortality rate in black/African American Medicare ckd patients age 66 & older, 2011 (deaths per 1,000 patient years; Table 3.c)

 Stages 1–2: 59 • Stage 3: 65 • Stages 4–5: 106

expenditures

$45.5 billion Medicare expenditures for patients with ckd, 2011 (Figure 7.5)

 non-Part D: $41.6 billion • Part D: $3.9 billion

$24.6 billion Medicare expenditures for patients with ckd & diabetes, 2011 (Figure 7.6)

 non-Part D: $22.2 billion • Part D: $2.4 billion

$21.2 billion Medicare expenditures for patients with ckd & congestive heart failure, 2011 (Figure 7.7)

 non-Part D: $19.7 billion • Part D: $1.5 billion

$5.3 billion total net Part D payment for Medicare enrollees with ckd, 2011 (Figure 5.9)

$22,348 per person per year expenditures for ckd patients in the Medicare population, 2011 (includes Part D; Figure 7.8)

 non-DM/non-CHF: $15,759 • ckd + DM: $18,611 • ckd + CHF: 30,619 • ckd + DM + CHF: $38,202

$3,949 per person per year Medicare Part D costs for enrollees with ckd, 2011 (Figure 5.10)

$613 per person per year out-of-pocket Part D costs for enrollees with ckd, 2011 (Figure 5.10)
February 2002: the National Kidney Foundation introduces a five-stage classification system for chronic kidney disease based on an estimated glomerular filtration rate (eGFR), calculated from serum creatinine levels and levels of proteinuria, and using data from the National Health and Nutrition Examination Survey (NHANES).

Diabetes, cardiovascular disease (CVD), and CKD are three interrelated chronic diseases of clear public health relevance.

Control of risk factors for CKD
Percent of NHANES participants at target blood pressure (<130/<80 for those with single-sample eGFR <60 or ACR ≥30 and diabetes; otherwise <140/<90)

New ICD-9-CM stage-specific codes for CKD were introduced in the fall of 2005, providing opportunities to use different datasets — like those from employer group health plans (EGHPs) — to track younger populations with reported diagnosis codes over time.

Mean age: Table 2.a
Recognized CKD: Table 2.b

Note: eGFR calculated using the CKD-EPI equation

CKD STAGE MARKERS
1 eGFR >90 ml/min/1.73 m², albumin/creatinine ratio (ACR) ≥30 mg/g
2 eGFR 60–89, ACR ≥30
3 eGFR 30–59
4 eGFR 15–29
5 eGFR <15

Percent of NHANES participants with single-sample eGFR <60 ml/min/1.73 m² and ACR ≥30 mg/g are associated with older age, diabetes, hypertension, and cardiovascular disease.

Means: Table 2.a

EGHP patients are much younger than Medicare patients.

CKD is recognized more frequently in Medicare patients age 65 and older than in the Truven Health MarketScan and Clininformatics DataMart populations, age <65.

New ICD-9-CM Codes
S85.1 Chronic kidney disease, Stage 1
S85.2 Chronic kidney disease, Stage 2 (mild)
S85.3 Chronic kidney disease, Stage 3 (moderate)
S85.4 Chronic kidney disease, Stage 4 (severe)
S85.5 Chronic kidney disease, Stage 5

Mean age: Table 2.a
Recognized CKD: Table 2.b

Note: eGFR calculated using the CKD-EPI equation
The prevalence of recognized CKD has increased significantly since 1995.

URINE ALBUMIN TESTING can detect early signs of kidney damage in patients at risk for CKD.

PROBABILITY OF TESTING IN 2011

- **11%** All patients
- **36%** Patients with diabetes (no hypertension)
- **5%** Patients with hypertension (no diabetes)
- **37%** Patients with both diabetes and hypertension

In patients with diabetes, hypertension, or cardiovascular disease, the odds of a CKD diagnosis code are **2–4 times higher** than in patients without these conditions.

Medicare (age 65+) Adjusted odds of a CKD diagnosis code Truven Health MarketScan (50–64)

- **2.1** Diabetes **3.1**
- **3.7** Hypertension **3.3**
- **2.4** Cardiovascular disease **2.7**
Chronic Kidney Disease in the United States

Medicare patients age 65 and older are twice as likely to see a cardiologist as a nephrologist following any diagnosis for CKD. Among patients with a CKD diagnosis of Stage 3 or higher, approximately two-thirds see either a cardiologist or nephrologist in the year following the diagnosis.

Hospitalization rates

- **All CKD**
 - Stage 1-2: 307
 - Stage 3: 416
 - Stage 4-5: 576
 - Hospitalizations per 1,000 patient years

Mortality rates

- **All CKD**
 - Stage 1-2: 34
 - Stage 3: 74
 - Stage 4-5: 109
 - Deaths per 1,000 patient years

Adjusted rates of rehospitalization are also higher in CKD patients than in those without the disease.

Physician care: Tables 2.9–h

Acute kidney injury: Figures 6.3–4

Hospitalization: Table 5.9

Mortality: Table 3.c

Rehospitalization: Figures 3.1 & 3.9–10
CVD patients with CKD carry a larger burden of cardiovascular disease than those without CKD.

<table>
<thead>
<tr>
<th></th>
<th>CKD: 2011</th>
<th>No CKD: 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVA/TIA</td>
<td>26.7%</td>
<td>20.3%</td>
</tr>
<tr>
<td>CHF</td>
<td>42.9%</td>
<td>18.5%</td>
</tr>
<tr>
<td>AMI</td>
<td>15.1%</td>
<td>6.4%</td>
</tr>
<tr>
<td>None</td>
<td>38.7%</td>
<td>61.7%</td>
</tr>
</tbody>
</table>

52% of CKD patients with CHF receive an ACEI/ARB
67% of CKD patients with CHF receive a BETA BLOCKER
58% of CKD patients with a stroke receive a STATIN
76% of CKD patients with AMI receive a BETA BLOCKER

January 1, 2006: Medicare Part D goes into effect to help subsidize the costs of prescription drugs in Medicare beneficiaries

Net Part D costs for Medicare CKD patients in 2011:
$5.26 BILLION

Costs top three drug classes used by Part D enrollees with CKD:
- $394 million insulin: 8.3%
- $302 million antiplatelet drugs: 6.3%
- $264 million statins: 5.5%

20.0% of total Medicare Part D drug costs in 2011

Overall patients with CKD account for 18% of total Medicare expenditures
CKD patients with diabetes account for 29% of Medicare diabetes expenditures
CKD patients with congestive heart failure account for 39% of Medicare CHF expenditures

Cost of caring for patients with CKD in 2011:
- Fee-for-service Medicare patients age 65 & older

CKD: $45.5 billion Medicare total: $249.8 billion
CKD + diabetes: $24.6 billion Medicare diabetes: $85.9 billion
CKD + CHF: $21.2 billion Medicare CHF: $54.7 billion
This is the twenty-fifth annual report of the United States Renal Data System, and the fourteenth in our atlas series. For the sixth year we include a volume on chronic kidney disease (ckD), defining its burden in the general population, and looking at cardiovascular and other comorbidities, adverse events, preventive care, prescription medication therapy, and costs to Medicare and employer group health plans. In Volume Two we provide information on the size and impact of the end-stage renal disease (ESRD) population — the traditional focus of the USRDS — presenting an overview of the ESRD program along with detailed data on incidence, prevalence, comorbidity of new ESRD patients, severity of disease, clinical care, hospitalization and mortality rates, pediatric patients, renal transplantation, the provider delivery system, the economics of the ESRD program, and international comparisons. In Chapter Ten of Volume Two we also examine changes to patient care after the introduction of the bundled ESRD Prospective Payment System in January, 2011, showing data through July, 2012.

This year’s ADR again presents data on the breadth of kidney disease and its impact on both individuals and society as a whole. Increased attention has been given recently to CKD, its progression to more advanced stages, and, most importantly, its high rates of adverse events, including death and end-stage renal disease. From a public health perspective, core issues center on prevention and on the preservation of kidney function over time.

To provide a framework for these issues, we draw on parallels between the growing understanding of CKD over the past decade and the knowledge gained over centuries in cartography and global navigation — knowledge which changed our views of the world. Throughout the book we show how, with the invention of more sophisticated mapping tools, views of the earth have altered and been clarified over time. Shorelines, for example, were first — and quite amazingly — drawn with such simple tools as a compass and the location of stars above the horizon. The ability to determine location by longitude was dramatically enhanced by John Harrison’s advancement of the maritime chronometer to accurately keep time in all types of weather conditions at sea. Today, global positioning systems define, with extraordinary precision, our port of call.

Just as our knowledge of the earth changes with the advancement of analytical tools, so too does our understanding of kidney disease, as illustrated by the introduction of the new CKD classification system in February, 2002, which has helped further our understanding of the landscape of CKD.

In this ADR, as in prior volumes, we reflect on the widespread impact of kidney disease: on the functioning of the heart, brain, and nervous system, on hormonal balance, on bone and mineral metabolism, and on anemia and our ability to resist infections. The replacement of kidney function through a kidney transplant is certainly a new beginning, but it too has its challenges, not the least of which is preserving the function of the transplanted kidney over time.

The emotional implications of life with kidney disease are substantial, and relate not only to the physical elements of the disease but to the enormous stresses of financial issues and the impact on personal relationships. Understanding these broad implications, we hope this volume enhances readers’ ability to navigate the complexities of CKD and ESRD, just as mariners found safe passage to distant ports.

We approach Volume One from the perspective that the implications of CKD were under-appreciated prior to February, 2002, when the new CKD classification staging system was proposed. The five-stage system was developed using population-level data from the National Health and Nutrition Examination Survey (NHANES), a surveillance system coordinated by the National Center for Health Statistics at the Centers for Disease Control and Prevention. The conceptual model of this system was
based on similar approaches for populations at risk for diabetes and hypertension, two well-known diseases that damage the kidney as well as other organ systems. The model characterizes progressive stages of CKD, from early evidence of kidney damage — such as albumin in the urine — to overt reductions in the filtering capacity of the kidney, defined by the estimated glomerular filtration rate (eGFR). This seminal guideline has been updated in the January, 2013 issue of Kidney International, which presents new information on prognosis, treatment, and refinement of the CKD stages.

The CKD-EPI estimating equation has been codified as a better measure of estimated GFR than the previous MDRD estimating equation. (The CKD-EPI equation is presented in the analytical methods, under “CKD in the general population.”) In the 2013 ADR we exclusively use the CKD-EPI to calculate eGFR.

While the USRDS and others will continue to investigate the issues surrounding the use, in both the clinical and public health arenas, of estimating equations to identify kidney damage, already there are important data available on the impact of CKD, data based both on biochemical information and on the definition of the disease within the Medicare and health plan datasets. The impact of the CKD staging system as a predictor of morbidity and mortality is now well known on a population level, but its translation into the care of individual patients must continue to evolve to help clinicians provide the best care to their patients affected by kidney disease.

In the Précis we highlight some of the most important data from the chapters, and address the burden of CKD — an area of major public policy and public health concern. In Chapter One we define the CKD population, using NHANES data to examine how chronic conditions such as diabetes and cardiovascular disease interact with CKD in a random sample of the US population. We use a single point in time to show evidence of these abnormalities, recognizing that repeated measures may be required to establish real reductions in eGFR and/or increased levels of albuminuria. For example, using just a spot albumin-to-creatinine ratio of 30 mg/g or greater, 9.2 percent of the general US population is identified as having CKD. We go on to show trends in risk groups, assess improvements in the awareness, treatment, and control of hypertension, diabetes, and lipid disorders, and conclude by looking at the impact of reduced kidney function on life expectancy.

Using data from the Medicare claims system and the employer group health plan (EGHP) datasets, we present data on identification and care of CKD patients in Chapter Two. We first summarize basic descriptive and comorbidity information from the major datasets used by the USRDS — the 5 percent Medicare sample, which includes individuals age 65 and older, and the Truven Health MarketScan (formally Thomson Reuters MarketScan) and Clinformatics DataMart (formally Ingenix I3) databases, with employed populations that are 20 years younger. We then illustrate that while the identification of CKD is increasing in the health plan datasets, particularly for Stage 3, recognized disease in these datasets remains less than the actual burden shown in the NHANES estimates. Rates of testing for evidence of kidney disease, using serum creatinine and urine albumin tests in high-risk groups, are far lower than needed — a major concern.

We conclude the chapter by looking at the likelihood of receiving nephrologist care after a CKD diagnosis, and at prescription drug therapy among patients with CKD.

In Chapter Three we address morbidity and mortality among patients with CKD. We compare hospitalization and rehospitalization rates in CKD and non-CKD patients, giving particular attention to rehospitalization patterns related to the primary condition of the first event. Interestingly, CKD patients not only have higher overall hospitalization rates than those seen in the general population, but their rehospitalization rates are higher as well. The lack of improvement in rehospitalization rates over the past decade is a source of concern. Rates accelerate as patients progress toward more advanced stages of CKD, reflecting increasing complications which are challenging to manage on an outpatient basis. We conclude the chapter with data on mortality rates by CKD stage and across risk groups.

Cardiovascular disease in the CKD population is the focus of Chapter Four, in which we evaluate, by CKD stage, major cardiovascular diagnoses, types of evaluations, adverse events and interventions, and the broad area of medication use. Data on Part D prescription drug therapy address recommended therapies for major cardiovascular diagnoses and for patients receiving certain revascularization procedures.

This year’s chapter on Medicare Part D prescription drug use again defines the populations using the benefit, and looks at various types of coverage, including the low income subsidy (LIS). We begin by showing the top medication classes used by CKD patients, reflecting the totality of their disease burden. We then look at enrollment patterns in the general Medicare, CKD, and ESRD populations with Part D coverage, highlighting the high percentage receiving the LIS, and present data on monthly premiums, deductibles, gap coverage, and copayments, or

continued on page 21
INTRODUCTION TO VOLUME ONE • CKD
out-of-pocket expenditures. We conclude with data on the use of specific medications in CKD patients with Part D coverage, and look at use during the transition to ESRD.

Acute kidney injury is a condition with implications beyond the immediate event. In Chapter Six, our examination of recognized AKI during a hospitalization looks at trends with and without the use of dialysis. We look at racial disparities, an area of major concern, at the medical conditions occurring with the AKI event, and at data on recurrent AKI events. We then focus on physician
care after an event, at prescription drug therapy prior to, immediately after, and 12 months after the AKI event, and on changes in CKD stage.

Chapter Seven addresses the costs associated with recognized CKD, based on Medicare data. We look at the relative burden of CKD versus other major chronic diseases such as diabetes and congestive heart failure, at per person per year costs, at costs by CKD stage and for Part D prescription drugs, and at the impact of the LIS.

Data in this volume illustrate the challenges that CKD, its complications, and its costs pose to the healthcare system, policy makers, and individuals and families facing this condition. Programs to detect CKD — some ongoing since 2000 — have been initiated by the CDC and by non-profit patient organizations. By their nature, detection programs are broad-based approaches to define, through the use of simple tests, populations at risk of a disease or its complications, targeting individuals for detailed evaluation and intervention. The data we present here indicate that the CKD population is under-recognized, and that care of CKD patients is less than needed based on clinical practice guidelines; both issues may contribute to the increased morbidity and mortality of this high-risk population.

The Researcher’s Guide, USRDS database, and USRDS administrative oversight are described in the introduction to Volume Two.

Maps in the ADR present data divided into quintiles. In the sample map here, for example, approximately one-fifth of all data points have a value of 10.8 or above. Ranges include the number at the lower end of the range, and exclude that at the upper end (i.e., the second range here is 8.2–<9.2). To facilitate comparisons of maps for different periods, we commonly apply a single legend to each map in a series. In this case the data in each individual map are not evenly distributed, and a map for a single year may not contain all listed ranges. Numbers in the first and last boxes indicate the mean values of data points in the highest and lowest quintiles.

The Excel page for each map (on our website and CD-ROM) includes additional data. The map-specific mean is calculated using only the population included in the map; this does not usually match other data in the ADR, and should be quoted with caution. The overall mean includes all patients for whom data are available, whether or not their residency is known. We also include the number of patients excluded in the map-specific mean, and the total number of patients used in the calculation.

Throughout the ADR, with the exception of NHANES data, CKD cohorts exclude ESRD patients.